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1. Introduction and Notation

Suppose X is a Hilbert space and A, B are closed convex nonempty subsets.
Finding a point in A N B or — if A N B is empty — a good substitute for it, is a
basic problem in various areas of mathematics.

Define the distance between two nonempty subsets M, N by

d(M,N):=inf | M — N | :=inf{|| m—n|: me MnéeN}
Clearly, a good generalization of A N B is

E = {a € A : d(a,B) =d(A, B)},

F := {be B : d(A) =d(B,A)},

because if AN B # 0, then E = F = AN B. Recall that the projection onto
a closed convex nonempty subset C' sends any point x to its nearest point in C,



186 H.H. BAUSCHKE AND J.M. BORWEIN

denoted Pcx, and is characterized by

Kolmogorov’s criterion:

Pez € C and (C — Pez,z — Poz) < 0.
Define further the displacement vector v by

v = P5—(0).

Given a mapping @ from X to X, the set of fixed points of Q, {x € X : Qz = z},
is denoted by Fix ). We then have further information on E, F' (see [1, Section 2]
for proofs):

FACTS 1.1.

@) |lvl=d(4,B), E+v=F,

(il) E =Fix(P4Pg) = AN(B —v),
F =Fix(PgP4) = BN (A +v),

(iii) Pge = Pre =e+ v (e € E),
Paf=Ppf=f-v(f€F).

The following elegant and highly successful algorithm for finding a pointin AN B
is at least 60 years old:

Given a starting point z € X, define the terms of the sequences (a, ), (b,) by
bo ==z, an = Ppbn,_1, b, := Pga,

for every integern > 1.

While developing modern operator theory, von Neumann [25, Theorem 13.7]
proved that both sequences converge to Panp(x) in norm whenever A, B are
closed subspaces!

Not surprisingly, the algorithm is called von Neumann's alternating projection
algorithm. We will refer to the sequences (a,), (b,) as von Neumann sequences
and to the sequence (bo, a1, by, az, b2, - - -) as alternating von Neumann sequence.

His result is truly remarkable, since the algorithm not only yields the nearest
point in A N B, but also converges in norm!

What happens in our setting, where A, B are arbitrary closed convex (possibly
nonintersecting) sets? Well, firstly we cannot expect to find P4npz, as simple
examples in R? show (take e.g. the unit disc and the z-axis). Secondly, we do not
know if the von Neumann sequences actually converge in norm. However, some
positive results are known (see [1, Section 4])):
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FACTS 1.2.

(i) bp—ap, by — an41 — V.

(ii)) If E, F are empty, then || a, ||, || bn || — oo.
If E, F are nonempty, then

ap — €5 ,by, — f*=¢€e"+v

for some e*E, f* € F.
(i) If E, F' are nonempty, then the von Neumann sequences converge in norm,
whenever
e A or B is locally compact or
e A, B are affine closed subspaces.
It is a famous open problem as to whether or not the convergence can actually be
only weak!

We would like to mention that Dykstra has invented an ingenious, but more
complicated algorithm that either (i) converges in norm to the projection of the
starting point onto E, F' (if E, F # 0) or (ii) tends to infinity (if E, F = 0); see
[1] for details and more references.

Nonetheless, von Neumann’s algorithm is very much alive, because its sim-
plicity is striking and it has found numerous applications. In fact, it has been
rediscovered frequently! We recommend Deutsch’s recent survey article [10] as an
excellent pointer to the relevant literature.

Here, we provide several results on norm and linear convergence of the von
Neumann sequences. The paper is organized as follows:

Section 2 gives a new interpretation of the displacement vector which we exploit
for the case where A, B are translates of cones.

In Section 3, we regard the von Neumann sequences as Fejér monotone sequences;
this viewpoint leads to some natural sufficient conditions for norm and linear con-
vergence.

Our main results are in Section 4, where we give an easy-to-verify sufficient
condition for linear convergence for the case when A, B intersect. In particular,
we obtain linear convergence whenever 0 € int(A — B) or A, B are subspaces
with closed sum. Variations of these results are known and due to Gubin et al.
[14] and Deutsch [9]. However, we obtain them here simultaneously by using the
Open Mapping Theorem for Convex Relations; thus we discover an underlying
common structure of two ostensibly different looking results. We finish the section
by proving that if A, B are affine subspaces with closed sum, then the von Neumann
sequences converge linearly with a rate independent of the starting point.

In Section 5, we discuss en detail the case where A is an affine subspace of
finite codimension and B is a Hilbert lattice cone — a special case of a moment
problem. Those problems appear in certain applications and are widely studied.
We give a result on linear convergence under a mild regularity condition.
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The last section deals with the case where we have N closed convex nonempty
subsets. A (now almost classical) product space formalization used by Pierra [18]
allows us to transform the N-set problem into a 2-set problem. Thus our results
apply and we obtain several linear convergence results relating to or improving
theorems by Pierra [18] and Gubin et al. [14].

Throughout the paper, we make use of the definitions and facts listed above as
well as the following:

If C is a closed convex nonempty subset and z € X, then the projection onto
the translate z + C is given by P,.¢c(z) = z + Po(z — 2) for any x € X. The
projection P is also firmly nonexpansive, i.e.

| Pox — Pey > + || ([ - Po)e — (M- Po)y [P < llz -y |I”

for every z,y € X so in particular it is Lipschitz continuous with constant 1, or
equivalently, nonexpansive.

We denote the norm dual space of a Banach space X by X*. If M, Z are
any subsets of X, then convM, M, intz; M, icore M denotes the closed convex
hull of M, the closure of M, the interior of M w.rt. Z, the intrinsic core of
M (= intz,, M, where aff M is the closed affine span of M), respectively. If
T € X, T > 0, then define

B(z,7):={z€X :||z—Z| <7} and Bx:= B(0,1).

Suppose S is a cone, i.e. a convex nonempty subset closed under nonnegative
scalar multiplication. Then we define S® := {z* € X* : z*(S) > 0} to be the
positive dual cone; analogously, S© := {z* € X* : z*(S) < 0} is the negative
dual cone. Of course, if S is a subspace, then S® = §© = S, where S is the
orthogonal complement of S. If S = S®, then we say that S is self-adjoint. If
S — S = X, then S is generating. If X is a Hilbert space vector lattice, then the
positive cone is denoted by X . Should (X, X *) actually be a Hilbert lattice, i.e.
a Banach lattice in the Hilbert space norm, then X is self-adjoint. This actually
characterizes Hilbert lattices; see [7, Theorem 8] for a proof and more.

In the framework of convex functions (see, e.g., [11, 16, 20, 24]), we use Isc for
lower semi-continuous, v for the indicator function of a subset M (¢ps(z) := 0, if
x € M, 400 otherwise), f10 f, for the infimal convolution of two convex functions

fis f2

(£10f2)(z) == inf{fi(z1) + fa(z2) : =1 + 22 =z}
If f is a convex function, then 3f denotes the subdifferential of f

Of (z) :={z* € X* : (z*,h) < f(x +h) — f(z) forall h},
f* denotes the convex conjugate of f

fX(x*) :=sup{(z*,z) — f(z) : z€ X}
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if ¢ is a concave function, then g, denotes the concave conjugate of g
gx(z*) := inf{(z*,z) — g(x) : z € X}.

A sequence (Z,)n>0 in X is said to converge linearly with rate k < 1, if there is
some constant (3 s.t.

| zn — 2 || < BK"

foralln > 0and z := limx,,.

Finally, we will see a few times the quantifiers V (= for all) and 3 (= there exists)
although we usually oppose the use of quantifiers. We feel, however, it is justified
whenever the corresponding statement in plain language becomes a monster.

2. On the Displacement Vector

Viewing the distance between two sets as a convex program is very instructive:
We will see that the displacement vector is nothing but the (unique) solution of
the dual program. We define f := %dz(-, A), g :== —up, then we have the primal
program

1
®) pi= inf f(z) - g(z) = 5d2(A,B),

so that the corresponding Fenchel dual program is

(D) o:= sup g.«(z*) — f*(z").
m*ex*

Since g is proper and f is continuous everywhere, we have strong duality, i.e.
o = p and o is attained [24, Theorem 7.15].

THEOREM 2.1. The displacement vector v is the unique solution of the dual

program (D).
Proof. Clearly, f = 1/2 | - ||* Ota, so by [24, Example 6.4.(a), Theorem 6.6]
f*=11-1?+¢4 and also —g, = ¢* 5. Now
1
— : * *\ * — _ . - . 2 * * B
© o= mip (/") - 0. =~ mip (511 +e+0p)
thus if z* solves (D), then
1 2 * * *
063 E “ ” +I’A+L—B (.'L' )
But 1 || - || is continuous everywhere and ¢y + ¢* p is proper (0 is in its domain),

so the sum formula [24, Theorem 5.38] applies and yields

—x* € (v + 2 g)(zY).
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Letting h := ¢ +¢* 5 = (t40c_p)*, we see that h is a conjugate function, hence
Isc. Thus h = h** by Hormander'’s Theorem [24, Theorem 6.18] and

—z* € Oh(z*) < z* € Oh*(—z*)
by [11, Corollary 5.2]. It is easy to check that 1 40:_p = t4_p, hence, using [24,
Theorem 6.20. (e)],

h* = (taDe_B)*™ = (4" p = tsmv(a-B) = =5
Therefore,
z* € Oh*(—z*) <= z* € dig—p(—=")
< *€B-A and (z*,A-B+12*)<0
<= =" = Pg—3(0) = .
(]

If the sets A, B are translated cones, then we are able to obtain an alternative
description of the displacement vector:

EXAMPLE 2.2. If A, B are translated closed cones, say A =a+ K, B=b+ L,
where a,b € X and K, L are closed cones, then

v = Pgenre(b—a).
If furthermore K, L are subspaces, then
v = PgiqpL(b—a).
Proof. It is easy to verify that if C is a closed cone, then ¢y = t¢e. Thus,

*[ % 1 * * * 1 * *
7@ = 5 127 1P + i (@) = 5 1 8° P + (", 0) + o a”)

and
g«(z*) = (2*,b) — tpe(z").

Hence
o = max (g9.(z%) ~ f*(z*) = ~ min (f*(z") - 6u(z"))
= — min (3 ll2" P + (", 0) + ixo(a®) = (2°,B) + 110(a"))
= — min_(ikonze(a’) +3 12"+ (@=0) >~} | a=bIP)
= -t - g, G-I

therefore, the unique solution of the dual is
z* = Pgonre(b— a).

By the last theorem, the proof is complete. o
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3. Fejér Monotonicity and Regularity

DEFINITION 3.1. Given a closed convex nonempty set C, a sequence (Zp)n>0 i8
called Fejér monotone w.r.t. C if

| #nt1 —cll <[l zn =<l

forallm > 0andc € C.

This notion goes back at least to [17, Section 4]. The nonexpansivity of projections
immediately implies the following:

EXAMPLE 3.2. The von Neumann sequence (ay,) (resp. (by)) is Fejér monotone
w.rt. E (resp. F). If AN B # (, then the alternating von Neumann sequence is
Fejér monotone w.r.t. AN B.

The next theorem summarizes basic properties of Fejér monotone sequences. Most
of them are well-known; property (iv) is due to Gubin et al. [14].

THEOREM 3.3. Suppose (z5)n>0 is Fejér monotone w.r.t. C. Then
(i) (zn) is bounded and d(zp+1,C) < d(z4,C).
(ii) If int(C) # O, then (x,) has at most one norm cluster point.
(iii) (z,) converges weakly to some point in C if and only if all weak cluster
. points lie in C.
(iv) (x,) converges in norm to some point in C, say z, if and only if d(x,,C)
tends to 0. In this case,

| zn — z || £ 2d(zn,C)

for every nonnegative integer n.
(v) Ifthere is some o > 0 s.t. for every nonnegative integer n

ad*(zn,C) < d*(@n, C) — d*(zn+1,0),
then there is some point in C, say x, s.t.
| zn — z ||< 2(1 — @)™?d(z0, C),
i.e. (x,) converges linearly to x with rate \/1 — a.
Proof. (i) is trivial, (iii) is proved exactly as [1, Lemma 4.7]. (iv) follows from

[14, Proof of Lemma 6] and implies (v). We prove (ii): We may assume that
Bx C C (after translation of C' and scaling the norm, if necessary). Suppose y1, 2
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are two norm cluster points of (z,,). Then || y; —b' || = || yo — V' || forall ¥’ € Bx.
Denoting the projection onto Bx by P, we conclude

lyi—=Pyill=llv2=Puill 2l y2— Pyl =l y1 — Py2 |,
hence Py, = Py, =: b. In particular,
y,2€ P7I(b)  and |y —bll=|lyp-b|="r
However,
“1py _ J {b}, if ||ofl<1,
P (b)_{{tb:tzl}, it | b]=1:

so P~1(b) contains at most one point with distance r to b. Hence norm cluster
points are unique whenever they exist. m]

An immediate consequence of (ii) is:

COROLLARY 3.4. If X is finite-dimensional and int(A N B) # 0, then the
alternating von Neumann sequence converges in norm.

REMARK 3.5. Of course, we know this already from Facts 1.2 (iii). Nevertheless,
it indicates that the interiority condition int(AN B) # @ forces ‘good’ behaviour of
the von Neumann sequences. This is indeed true, as we will see in the next section.

Theorem 3.3 gives us sufficient conditions for norm or even linear convergence of
Fejér sequences. The program is now clear: We must adjust those conditions to our
setting. We start with a sufficient condition for norm convergence.

DEFINITION 3.6. We say that (A, B) is boundedly regular if

\ vV 4 \ d(z,E) < e.

X DSbounded ¢e>0 6>0 x€S:
max{d(z, A),d(z,B —v)} < §

Loosely speaking, we can say that if a point is close to A and to B — v, then it
cannot be too far away from A N (B — v) = E. Note that if (A, B) is boundedly
regular, then E, F # 0, since inf ) = co! In some sense, the definition of bounded
regularity is symmetric in A and B, because it is equivalent to

\v/ YV d v d(y,F) < e.

X DOTbounded ¢e>0 6 >0 yeT
max{d(y, B),d(y, A +v)} < 6

THEOREM 3.7. If (A, B) is boundedly regular, then the von Neumann sequences
converge in norm.



VON NEUMANN’S ALTERNATING PROJECTION ALGORITHM 193

Proof. The sequence (ay) is Fejér monotone w.r.t. E, so by Theorem 3.3 (iv) it
is enough to show that d(ay,, E) tends to 0. Now (a,,) lies in A and

d(an, B —v) < |l an — (bp —v) | - 0

by Facts 1.2(i). Thus the sequence max{d(a,, A), d(an, B — v)} tends to 0. Con-
sequently, the sequence (a,) converges in norm to some point in E, because (a,,)
is bounded and (A, B) is boundedly regular. Also, (b,) converges in norm by
observing that either the definition of bounded regularity is ‘symmetric’ in A and
B or that (b,) is the sum of two norm convergent sequences, namely (b, — a,,)
and (ap). O

REMARK 3.8. It should be noted that not all pairs (A, B) are boundedly regular;
see Example 5.5, which shows that bounded regularity is sufficient but not neces-
sary for norm convergence of the von Neumann sequences!

THEOREM 3.9. If A or B is boundedly compact, then (A, B) is boundedly regular.
Proof. Without loss, assume A is boundedly compact. Suppose to the contrary
that (A, B) is not boundedly regular. Then

= 1 Vv = d(z,E) > e.

X D Sbounded e>0 6 >0 TES:
max{d(z, A),d(z,B —v)} < ¢

In particular, we obtain a bounded sequence (z,) s.t.
ZTp — Paz,, ZTn — Pp_yxzn — 0 and d(zn, E) > e.

After passing to a subsequence if necessary, we may assume that (z,) converges
weakly to some point Z. Because distance functions are weakly Isc and d(z,, 4),
d(zn, B — v) — 0, we conclude (with Facts 1.1 (ii)) that Z € AN (B —v) = E.
Hence, the sequence (P4 x,) converges weakly to Z and has (by bounded compact-
ness) at least one norm cluster point. On the other hand, every weakly convergent
sequence has at most one norm cluster point. Altogether, (Psz,) converges to
Z in norm. Therefore, (z,) converges to Z in norm implying d(z,,E) — 0, a
contradiction to d(x,, F) > e. m]

COROLLARY 3.10. If A or B is boundedly compact, then the von Neumann
Sequences converge in norm.

Again, the last corollary is well known (see, e.g., Facts 1.2 (iii)), but we deduced
it here directly from the geometrical property of bounded regularity. Now we for-
mulate a sufficient condition for linear convergence.
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DEFINITION 3.11. We say that (A, B) is boundedly linearly regular if

v 34 V  d(z,E) < kmax{d(z, A),d(z, B — v)}.
XDOSbounded Kk >0 z€ S

It is obvious that bounded linear regularity implies bounded regularity. Again we
have ‘symmetry’ in the sense that the definition is equivalent to

\4 3V d,F) < smax{d(y, B), d(y, A +v)}.
XDOTbounded Kk >0 yeT

THEOREM 3.12. If (A, B) is boundedly linearly regular, then the von Neumann
sequences converge linearly.
Proof. Since the sequence (a,,) is bounded we obtain k > 0 s.t.

d(an, E) < kmax{d(an, A),d(an, B — v)} = kd(a, + v, B).

Fix an arbitrary e € E. Because Pg is firmly nonexpansive, Pge = e + v and Fix
(P4 Pg) = F (see Facts 1.1), we estimate

dz(an +v,B) < ||an+v -0y ||2 = || (an — €) — (Pga, — Pge) ||2
< ” an—e||2— ” Pga, — Pge "2
< (llan — € |I> = || Psan — Pge ||*) +

+ (|l Pgan — Pge ||> = || PaPgas, — PaPge ||%)
|l an —e* = || ant1 —e|?

for all n > 0. In particular, if e = Pga,,, we obtain

< d*(an,E) — d*(any1, E).

1
ﬁdz(anaE) < ” an — Pgan ”2 - “ an+1 — Peay ”2

By Theorem 3.3 (v), the sequence (a,) converges linearly. By symmetry, the
sequence (b, ) also converges linearly. 0

The reader will note that the rate of convergence possibly depends on the starting
point. For applications, one is more interested in results on linear convergence with
a rate independent of the starting point. This can be achieved by requiring an even
stronger regularity condition. So let us define a stronger, global version of bounded
regularity and of linear bounded regularity.

DEFINITION 3.13. We say that (A, B) is regular if

vV 3 Y d(z,E) < e.
e>0 6>0 zeX:
max{d(z, A),d(z,B —v)} < §
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Analogously, we say that (A, B) is linearly regular with rate «, if

\ d(z,E) < kmax{d(z, A),d(z, B — v)}.
reX

Note that we have once more ‘symmetry’ and that these regularities imply their
corresponding bounded versions. The proof of the last theorem in combination
with Theorem 3.3 (v) immediately leads to the following corollary.

COROLLARY 3.14.1f (A, B) is linearly regular with rate k, then the von Neumann
sequences converge linearly with rate

1-—.
)

Next, we explore some relations among the various ‘regularities’.

THEOREM 3.15. If (A, B) is boundedly regular and A or B is bounded, then
(A, B) is regular.

Proof. Without loss, assume the set A is bounded. Then so is S := A + By.
Given a fixed € > 0, we get §' > Os.t.

\ d(z,F) <e.
z€S:
max{d(z, A),d(z,B —v)} < ¢

If we let § := min{1, §'}, then it is easy to see that this § does not required job (in
the definition of regularity). a

EXAMPLE 3.16. Suppose
X =R, p >0, A:={(z,y) € X :y = p}, B := By.

By [1, Example 5.3], the von Neumann sequence (a,) converges linearly if and
only if p # 1. However, (A, B) is regular for all p > 0. Hence, norm convergence
is the best we can hope for when the sets are regular! We now show that (A, B) is
not boundedly linearly for p > 1. Indeed,

F={0,1)},  d((=z,9),F) =122+ (@y-1)

and

d((a:,y),A +'U) = Iy - 1|>

0, if 22 + 9% < 1,
d((z,y), B) = { Vz? + y2 — 1, otherwise.
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Consider (z,1) for x > 0. Clearly, (z,1) € (A + v)\B. Hence

max{d((z, 1),B),d((.’L‘, l)aA +'v)} =V 2 +1- 1, d((xa 1)’F) =z

However,
T

Va2 +1-1

so (A, B) is not boundedly linearly regular. Hence, bounded linear regularity is a
sufficient but not a necessary condition for linear convergence of a von Neumann
sequence. Also, regularity can occur when bounded linear regularity does not.

— o0 (z—0),

For cones, however, we can say more:

THEOREM 3.17. If A, B are nonempty closed convex cones, then TFAE:
(i) (A, B) is regular.
(ii)) (A, B) is linearly regular.
(iii) (A, B) is boundedly linearly regular.
Proof. Clearly, (ii) implies (i) and (iii). Let us prove that (i) implies (ii)! For
e=1,wegetd > 0s.t. d(z, AN B) < 1 whenever

m(z) := max{d(z, A),d(z,B)} < 6.

Pick y € X\(A N B) and let z := (6/m(y))y. Since projections onto cones are
positively homogeneous, we conclude m(z) = 6 and further

d(z,ANB) = %d(y,Aﬂ B)<1 so d(y,ANnB) < %m(y).

But the last inequality is true for all y € X and therefore (ii) holds. It remains to
show that (iii) implies (ii). For Bx, we get K > O s.t.

d(z,AN B) < kmax{d(z, A),d(z, B)}

for all z € Bx. Using the positive homogeneity of the projection onto a cone once
more, we see that (A, B) is linearly regular with rate x. a

REMARK 3.18. Franchetti and Light [12, Section 4] constructed two subspaces
with nonclosed sum and an alternating von Neumann sequence which does not
converge linearly. By Corollary 3.14 and Theorem 3.17, this pair of subspaces
is neither regular nor boundedly linearly regular. We do not know if it is bound-
edly regular. Their examples also shows that regularity is only sufficient but not
necessary for norm convergence of the von Neumann sequences.
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4. Regularity and the Open Mapping Theorem

LEMMA 4.1. Suppose M, N are closed convex sets with nonempty intersection.

If

= = \ d(z,M N N) < kd(z, N),
TeEM k,7>0 z € Mn B(z,27)

then

V' d(z,MNN) < (26 + 1) max{d(z, M), d(z, N)}.
x € B(z,T)

Proof. Claim 1: For every x € X, we have
d(z,M N N) < (2 + 1) max{d(z, M N B(z,27)),d(z,N)}.
Indeed,
f(z) := kmax{d(z, M),d(z,N)} — d(x, M N N)
is (k + 1)-Lipschitz on X and, hence, for any z € X
(k + 1)d(z, M N B(Z,27)) + f(z) > inf f(M N B(z,27)),
implying

d(z,M N N)
< (k + 1)d(z, M N B(%,27)) + k max{d(z, M N B(z,27)),d(z,N)}

and Claim 1 is verified.
Claim 2: d(z, M) = d(z, M N B(Z,27)) for every z € B(Z, ).

Clearly,
lz-Puz||<llz-2|<T,
SO
| Pmz -z || <||Puz—z || +|lz—z| <27
and, hence, Pysx € M N B(Z,27) implying
d(z, M N B(z,27)) < d(z,M).

Thus, Claim 2 is verified, since obviously d(-, M) < d(-, M N B(z, 27)).
Both claims together finish the proof. ]
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The next lemma is a very special version of an inversion theorem for convex
multifunctions given by Robinson [19, Theorem 2]. Since the proof is short, we
include it here.

LEMMA 4.2. Suppose X, Y are Hilbert spaces and T : X — Y is linear,
continuous. Suppose, further, that M is a closed convex subset of X and N is a
closed convex subset of Y. Suppose, finally,

= = v
TEMNTY(N) >0 ze€ M\T"Y(N)
PNTCE—T.’E
B(z,1)Nn M) — N.

Then
| Tz -yl+IT],

@ V  d,@M)nN)< (3, N).

yeTM
If, additionally, N C range T, then

i) V  daMnT'(V) < L1+ ||z - 2 |)d(z, T(NV)).

TeEM

Proof. Without loss, assume z ¢ T~!(N)andy = Tz. Selectm € MNB(z, 1),
n € N s.t.

dyg

n PyTx —Tx — Tm—n
| PNTx — Tz || ’
and define
|| PNyTzx - Tx ||

A=
|| PNT:E —Tx ” +77

Then, one checks that
Tm=0-=ANTz+XTm=(1-AN)PyTz+ An € N.
Hence, m € M NT~Y(N), T/ € TM N N. Thus (i) is proved by
d(y,(TM)NN)
<lly=Tm||=ATz-Tm ||[<A(|| Tz -Tz ||+ || T2 —Tm ||)
SMITz-Tz |+ T1)

PyTx —Tx _
< I Pw : L rz -T2+ 17 1)

€]0,1[,n := (1 — A)z + Am € M.

_ N Tz-Tz ||+ T,

n
_ly-Tz+]T]

n

(Tz,N)

d(y, N).
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We always have
d(z, M NT~(N))

Slz-ml=Allz-m|<AMlz-Z[+[Zz-m])
SA+llz—z DA

_ll PNnTz —Tx
<+ o -z P2 ”
= ill—zl”d(Tx,N).

If range T' O N, then
d(Tz,N) < || T || d(z, T~ (V).
Therefore, (ii) follows. D

THEOREM 4.3. Suppose X, Y are Hilbert spaces and T : X — Y is linear,
continuous. Suppose furthermore M is a closed convex subset of X, N is a closed
convex subset of Y. Suppose finally 0 € icore (TM — N). Then:

(i) (TM,N) is boundedly linearly regular.
If, additionally, N C range T, then

(i) (M,T~Y(N)) is boundedly linearly regular.

Proof. Consider

Tx— N, z e M,

Q:X:;Z:zspan(TM—N)ixH{@, else.

Then 2 is a closed convex relation with range Q = TM — N. The interiority
assumption together with the Open Mapping Theorem (see [2, Theorem 8(c)])
imply that © is open at 0. Thus, we can pick any Z € Q71(0) = M NT~!(N) and
obtain

0 € intzQ(B(Z, 1)) = intzQT(B(z,1) N M) — N).

Hence, there is some constantp > 0s.t. Bz C T(B(Z,1) N M) — N. Applying
Lemma 4.2. (i) yields

ITZ—y |+ I T

V  dy,(TM)nN) < d(y, N).
yeTM
If 7 is any positive number, then
v . annm) < T g, ),

y € TM N B(TZ,27)
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Therefore, by Lemma 4.1,

V  dy(TM)nN)
y € B(Tz,7)

27+ || T
< (2—’"“%9—J + 1) max{d(y, TM), d(y, N)}.
So (i) is verified. By using Lemma 4.2.(ii) we can prove (ii) similarly. O

REMARK 4.4. Borrowing notations from the last proof, we see that the convex
relation (2 is regular at (Z,0) in the sense of Borwein [3, Corollary 4.1] and that
0 is a regular value of €2 in the sense of Robinson [19, Section 2]. We hope that
the reader may accept this as an a posteriori justification for choosing the notations
‘regularity’ in the definitions of Section 3.

The last theorem gives a nice sufficient condition for linear convergence when A,
B have nonempty intersection:

COROLLARY 4.5.If O € icore(A — B), then (A, B) is boundedly linearly regular
and the von Neumann sequences converge linearly. In particular, this happens
whenever

(i) O€int(A— B)or

(ii) A — B is a closed subspace.

Proof. Apply the last theorem withY = X, T =1d, M = A and N = B; then
(A, B) is boundedly linearly regular and the result follows from Theorem 3.12. O

In view of Corollary 3.14 and Theorem 3.17, we also obtain the following corollary.

COROLLARY 4.6. If A, B are two closed subspaces with closed sum, then the
alternating von Neumann sequence converges linearly with a rate independent of
the starting point.

REMARKS 4.7.

e We emphasize that the last theorem and its corollaries apply only to the
case where A, B have nonempty intersection. For if v # 0, then interiority
arguments will not work since the displacement vector v is in the boundary
of B — A.

e Corollary 4.5.(i) strengthens a result by Gubin et al. [14, Theorem 1.(a)] who
— in the case of two sets — assumed the stronger

(intA N B) U (intB N A) # 0.

e Corollary 4.6 is in the flavour of a result by Deutsch [9, Theorem 2.3], who
is even able to specify the rate of convergence in terms of the angle between
A and B. We also known that Corollary 4.6 is sharp in the sense that linear
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convergence can fail if the sum of the two subspaces is not closed, see again
Franchetti and Light’s example [12, Section 4].

e It seems to be new that these results can be obtained simultaneously using
techniques from set-valued analysis!

For the remaining part of this section, we assume that A, B are closed affine
subspaces, say A = a + K, B = b+ L for vectors a, b € X and closed subspaces
K, L. The following definition dates back to Friedricks (1937) [13]:

DEFINITION 4.8. The angle between K and L is defined to be the angle v(K, L)
between 0 and /2 whose cosine is given by

cosy:=sup{(k,l) : k€ BxynKN(KNL),le BynLN(KNL)<}.

Deutsch [9, Lemma 2.5.(4)] proved the following nice result regarding the angle:

FACT 4.9.
Y(K,L) >0 <= [K N (KN L)Y+ [LN(KNL)"'] is closed.

Fortunately, the latter condition has a nicer equivalent formulation; its proof is due
to A. Simonic [22]:

LEMMA 4.10.
[KN(KNL)Y) +[Ln(KNL)Y s closed <= K + L is closed.
Proof. Denote [K N (K N L))+ [L N (K N L)Y by S.
Claim 1: S=(K+L)n(KnL)*.

‘C’: is trivial. Conversely, fix x € (K + L)N (K NL)*. Then z = k + [ for some
vectors k € K,l € L and

z = (Id — Pgnp)k + (Id = Pxnp)l,

since z € (K N L)*. This shows ‘D’. Claim 1 is verified and immediately implies
‘«=’. Similarly, we see

Claim 2: K+ L=[K+L)n(KNL)*)+(KnL).
These claims together imply
K+L=S®((KNnL).

Since K + L is the orthogonal sum of S and K N L, we conclude that K + L is
closed whenever S is. Thus ‘=" holds. O
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The set up is complete. With the help of some other results by Deutsch [9], we can
now prove the following:

THEOREM 4.11. If K + L is closed, then the von Neumann sequences converge
linearly with rate cos y(K, L) independent of the starting point. In particular, this
happens whenever one of the following conditions holds:

(i) K or L has finite dimension.

(ii) K or L has finite codimension.

Proof. The assumption that K + L is closed is equivalent to v(K, L) > 0 and
E, F # ( (by Fact 4.9 and Lemma 4.10). Recalling

Psxz = P, gkx =a+ Px(x —a) = Pgia + Pkx
and

Ppx = Py b+ Prx
for every x € X, and defining

r:= Pgia+ PgPp.b, §:=Ppib+ PLPg.a,
we can ‘decompose’ the von Neumann sequences as follows:

bny1 = PBant1 = Ppib+ Prapy1 = Ppib+ PLPaby,
P;.b+ Pr(Pgia+ Pyby)

= s+ PpPgb,

= s+ P Pg(s + PLPkbn,_1)

= S (PLPk)*s + (PLPg)" b,
k=0

and similarly

A+l = Z(PKPL)’CT + (Pg Pr)"aq

k=0
for all integers n > 0. By [9, Theorem 2.3], we know that
(PLPk)"bp — Prnrbo, (PxPr)"a; — Pknra

linearly with rate ¢, where ¢ := cosy(K, L). In fact, the limits coincide, since
(PxPr)"a; = (PKPL)n(PAbo) = (PKPL)n(PK.La + Pxby)
= (PkgPL)"(Pg1a) + Px(PrLPk)"bo
— PxnrPgia+ PgPrnrbo
= Pgnrbo.
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So we must discuss the sums in the decomposition of the von Neumann sequences!
Firstly, it is easy to check that r,s € (K N L) and that

PpLPx = Pxnr + PLPxkPgnpyt,
Px Py = Pgnp + Pk PLPgnp)t;

hence secondly for any integer n > 0:

n—1
an, = (Z(PKPLP(KOL)J- )k) T+ (PKPL)n_lal,
k=0

n—1
b = (Z(PLPKP(KOL)-L)’C> s + (PpPk)"bo.
k=0

Thirdly, by [9, Proof of Lemma 2.5.(3)],
| PLPxkPigaryt || = || PkPLPgnrys | =c < 1.

Therefore,

n—1

> (PxPyPynryr)*r — (Id — PkPLPynapyr) "',

k=0

n—1

Y (PLPxPinryr)fs — (Id — PLPgPnryr)™'s

k=0
linearly with rate c. Altogether: Every von Neumann sequences is — as a sum of
two sequences, where one converges with rate ¢ and the other converges with
rate ¢ — linearly convergent with rate c. Note that (i) follows since the sum of an
arbitrary closed subspace and a finite-dimensional subspace is closed. Finally, (i1)
follows since K + L is closed if and only if K1 + L' is. The proof is complete. O

5. An Important Example
Throughout this section, we assume the following:
X is a Hilbert lattice with lattice cone S := Xt, while T : X —» Y := RV is

linear, continuous and given by  — ((t;, z))?, for some vectors ¢, - -, ty € X.
We also assume that 7" is onto, equivalently (see, e.g., [21, Theorem 4.15])

T : RN — X (/\1;)?____1 — Z/\iti
=1

is one-to-one, equivalently the ¢;’s are linearly independent. Since kernel (T7*) =
kernel (T*) = {0}, we may define

Q :=T*(TT*)"'T.
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It is straightforward to check that

TQ=T, QT*=T", @=Q, Q=Q% Pugr =0Q,
and, since always kernel T' = (range T*)+,

Pema T =1d — Q =1d — T*(TT*)"'T.
We now define the sets A, B. Given by § € Y, we let

A:=T7Y(j) and B:=S.

Thus we are interested in finding a solution to 7'z = ¥ subject to a nonnegativity
constraint. Such problems arise frequently in applications and are often referred
to as ‘moment problems’ (see [6] for a recent survey article). Often, one wants to
find a nonnegative solution which minimizes a convex objective function. In our
case, the objective function is identically zero. Nonetheless, even this feasibility
problem has many applications!

Working with a Hilbert lattice, we can readily describe Ppg; it is just taking the
positive part (use [7, Theorem 8] to check Kolmogorov’s criterion!). But how can
we describe P4? Well, fix an arbitrary Z € A, then A = Z + kernel T and, hence,
forany z € X:

Pyz = P:2+kemel 7T = T + Pernel T(x - 573)
=Z+(d-Q)(z—2)=Qz+ (Id-Q)zx
=z+Q(Z—1z).
Possessing a lattice cone, we can describe the relation between a,, and a1 nicely:

P P _
an —> b, = Pga, = a;f —2 an+1 = Pab, = Q% + (Id — Q)a,’f.

Since this is true for an arbitrary T € A, we can simply choose T = a, and obtain
the even nicer iteration:

ant+1 = Qan + (Id — Q)a,'*,' = a,f - Qa,.

Note, by the way, that the range T*-part of (a,,) is constant: Qa; = Qa2 = Qa3 =
---. What is the displacement vector in this setting? By Example 2.2, we get

v = P(kemel T)eﬁSG?("j) = Prange r*nse(—Z),
for an arbitrary Z € A. And from Facts 1.2(i), we learn
a, — v.

THEOREM 5.1. If Q(S) C S, then E,F # 0 and the von Neumann sequences
converge in norm. In particular, this happens whenever {ti,t,---,tn} is an
orthogonal subset of S U (—S).
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Proof. Because of
+ _ -— .
Q1 = (a';z‘- - Qa, )t < (a,"{)+ + (—Qa, )yt = a,'l',
the sequence (a;}) is decreasing and, hence, converges to some s € S in norm. But
then

+

ap=a, —a, —S$—0

and
bp = (bp —an)+an, —v+(s—v)=s.

It remains to verify the ‘in particular’ part. Using orthogonality of the t;’s, we
check that :

N

t; t;
Tr = T
Q= e e

for every z € X. However: If z € S and s € SU (—S), then (s, x)s € S. Hence
Qz € S and the proof is complete. a

The following lemma is needed for the discussion of the case when A, B have
nonempty intersection. It is true for an arbitrary closed cone S.

LEMMA 5.2. If S is a closed cone, then TFAE:

) A/ y =0.
yeY : :T*ye S®

) TS=Y.

(iii) range T* N S® = {0}.

Proof. ‘(i) == (ii)’: Suppose to the contrary that TS G Y.

Claim1: TSGY.

By [23, Theorem 3], T'S is a C'S-closed subset since T'S is convex and Y is
finite-dimensional. Were T'S = Y, then, by [15, Theorem 22.4], Y = int(Y) =
int(T'S) = int(T'S) C T'S G Y — a contradiction. Claim 1 is verified.

Claim2: (y*,TS) >0 forsome y*€ Y\{0}. L
By Claim 1, T'S is a proper closed convex subset of Y. Fix z € Y\T'S. We can
separate and thus obtain y* € Y\ {0} s.t.

(y*,TS) > (y*, 2)-

Claim 2 follows, because T'S is a cone.
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But Claim 2 also means that T*y* € S®. By assumption, y* must equal zero — the
desired contradiction. ‘(il)=>(iii)’: Suppose T*y € S®. Then

0<(T"y,S) = (v, TS) = (y,Y).

This implies y = 0. ‘(iii)==-(1)’: Suppose T*y € S®. Then, by assumption,
T*y = 0 implying y = 0, since T™* is one-to-one. The proof is complete. a

We return to our original setting, i.e. S is a Hilbert lattice cone.

THEOREM 5.3. Suppose AN B # (. Then the alternating von Neumann sequence
converges - - -

(i) linearly, whenever y € intT'S.

(i) linearly, wheneverTS =Y.

(iii) linearly, whenever range T* N S® = {0}.
(iv) in norm, whenever N = 1.

Proof. (i) follows by application of Theorem 4.3 (ii)to M = S, N = {g}: We
obtain bounded linear regularity of (A, B) whenever 0 € icore(T'S — ). Corollary
3.14 then implies linear convergence. By the last lemma, (ii) and (iii) are equivalent
and clearly imply (i). It remains to prove (iv). If N = 1, then range T* = span{t, }.
Either t; € S U (—S) and the last theorem applies. Or t; ¢ S U (—S), then range
T* NS = {0} and (iii) applies. O

REMARKS 5.4.
e Canonical examples for Hilbert lattices are X = L,[0, 1] and ¢>(N) with the
point-wise ordering.
e Theorem 5.3 (i), (ii), (iii) hold if S is any vector lattice cone. But one has to
be careful since in general Psz # z™; so the iteration for the sequence (a,)
becomes

Ant1 = Psa, + Q(an - PSan)-

e If the quasi-relative interior of S is nonempty, then Borwein and Lewis proved
that

intTS =T(qri S).

To apply (i), we must check that § € T'(qri .S) which is usually easier! For
example, if X = L,[0,1], S = X, then

qri S = {z € L,[0,1] : > Oa.e.},

and it is often a priori clear that a strictly positive solution exists. For more on
this concept see [4, 5].
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o (i1) implies (i), but the converse is false in general: Indeed, let Y := R and fix
T € S\{0}. Then TS = [0,+cc[, 1 € intTS,but TS GY.

e We proved (i) by showing that § € int T'S implies (A, B) is boundedly
linearly regular. The next example shows that we cannot drop the interiority
assumption.

EXAMPLE 5.5. Let
X = €2(N)a N = 17 g:= 0’ T:= (T],T2,"') €S

If{n € N: T,, > 0} is infinite, then (A, B) is not boundedly regular. Nevertheless,
the alternating von Neumann sequence converges in norm. Consequently, bounded
regularity is a sufficient but not a necessary condition for norm convergence of the

von Neumann sequences.
Proof. Define I := {n € N: T, > 0}. Clearly,

ANB={z € X :z, =0if n € Iz, > 0 otherwise}.

Ifc € ANB,then|| e, —c || > |1—cp|;soforalln € I, weconclude || e, —c || > 1
and further

d(en,,ANB) > 1.

In fact, we can pick 0 € A N B to get equality. On the one hand, e, € S = B, so
foralln > 0,

d(en,B) =0.
On the other hand,
T, x
PA:L‘ = Pkemel T = P{T}_LCE =T — |T—TT>2T,
thus
T,
d(en, A) =|| en — Paen ||= “—T—“ — 0.

Altogether: d(e,, A), d(e,, B) — 0, but d(e,, A N B) = 1 infinitely often.
Therefore, (A, B) is not boundedly regular. The convergence of the alternating
von Neumann sequence follows from Theorem 5.3 (iv). O

6. Finitely Many Sets

In applications, it is often of interest to find a point in the intersection of finitely
many sets (or, if the intersection is empty, a good substitute of it). This can be done
by Pierra’s clever product space formalization [18] which reduces the problem to
one involving two sets only! Recently, this approach, among much more general
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iteration schemes, has become increasingly popular since it is ‘parallelizable’; we
refer the interested reader to a survey article by Censor [8].

Setting. Let X be a Hilbert space, C, Cy, - --,Cn (N > 2) closed convex nonemp-
ty subsets with projections Py, P, - -+, Py. Define

1

X = Hilil(X,ﬁ<‘,‘>),
A= {(z1,,zn)EXiy =2 = =N € X},
B := {(z1,-,zny) €X:z; €Cifori=1---N} =1I¥ ,C;.
As shown in [1, Section 6], the following is true: For two points X = (1, -, ZN),

y = (y1,"*,yn) € X, we have
2 N 1 2
Ix=ylI>=> < llzi—wl
'i=1N

and the projection onto A, B is given by

PA(ml7m2,"'axN) = ( Zi, Tiy oty mia)a
i:lN i=1N i=1N

Pg(z1,22, - -,zn) = (Pix1, P2, -, PNZN).
The set E = Fix(Pa Pg) was found to have the alternative description E =
{(z,z,---,z) € X:z € E}, where

P+P+---+ Py
N

N
E = Fix = arginf  x Z d*(z, C;).
=1

This time, we give a different description for F = Fix(Pg Py ):

THEOREM 6.1.
F = arginf(cl,)eB Z Z | e — ¢ ||2
i=1-N j=1--Nij»
Proof. We define the right-shift operator R : X — X : (z, -+, ZN) +—
(zN, 1, ,TN-1), the left-shift operator L := R* and consider for an arbitrary
but fixed A > O the convex program

. A N-1 ) .
(P)  infgZ > [ x— Rx[|* = infy x f(x) + B (x),
i=1

where fy(x) := (A/2) Z;-V;ll | x — R’x ||%. By [24, Example 6.4(a), Theorem
5.38] and the chain rule [11, Proposition 5.7],
N-1 _ .
Vi) =X (1d-L7)(d - R)x,
=1
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so the optimality condition for (P)) becomes

0 € Vfi(x) + 9g(x) <= —V fir(x) € dug(x).
On the other hand,

x* € dig(x) < x = Pg(x* +x).
Thus

x solves (P)) < x = Bg(x — Vfi\(x)).
Hence

arginf (Py) = Fix Pg(Id — V f)).

Since this is true for any positive )\, we can choose A = 1/(2N), which — after
an elementary calculation — yields

A A |
x - Vfix) = (; N ; NI ,; Nmi’) = Pj(x),
for every x = (z1,---,zn) € X; s01d — V f5 = Py and therefore
arginf (Py) = arginf (P;) = Fix PgPy =F.

Finally, observing F = arginf (P;) finishes the proof. ]

We believe that the alternative descriptions of £ and F are highly satisfying:
Loosely speaking, the set E consists of all points which are simultaneously close
to all of the sets C}, - - - , Cn, whereas the set F consists of all N-tuples of points
which are simultaneously close to each other. Of course, if the sets Cy,---,Cn
have nonempty intersection, then all these meanings collapse to this intersection.

We want to study von Neumann’s algorithm in this setting. It is here more
elegant to ‘ignore’ the product space setting by following just the von Neumann
sequence in A — that is: X — and to start the algorithm at a point in A. The von
Neumann algorithm then becomes:

Ant1 = 19n + 2an];"- t Nan, a1 € X.

Combining [1, Theorem 6.4] with the last theorem yields the following theorem.

THEOREM 6.2.

N N
Y|l an — Pian I?, Y || Pian — a1 |> — Nd*(A,B).



210 H.H. BAUSCHKE AND J.M. BORWEIN

Moreover:

If E is empty, then

| an ||, max{|| Pran ||, Paan ||,---,| Pnan ||} — oo.
If E is nonempty, then

anp — €%, Pa, — Pie*,---, Pyvap — Pye*

for some e* € E and

N
e* € arginf,cx Y d*(z,Cy),
1=1
(P;e*) € arginf ) B Z Z |l ci—ci |-
i=1---N j=I1.--N:
J#i
All our results of the previous sections may be reformulated in this product space
setting. We think that the following is the most interesting:

THEOREM 6.3. If 0 € icore(A — B), then the von Neumann sequence (a)
converges linearly. This happens whenever one of the following conditions holds:

(i) O€int(A —B).

(i) Ci;NNj=1..Nijzi int C; # 0 for some .

(iii) int(N;=;..y Cj) # 0.

(iv) A — B is a closed subspace.

(v) Every C; is a finite-dimensional affine subspace.
(vi) Every C; is an affine subspace of finite codimension.
(vii) Every C; is a hyperplane.

Proof. The main statement, (i) and (iv) follow directly from Corollary 4.5. If
all C;’s are finite-dimensional, then so is B and thus (iv) holds — this gives (V).
Similarly, (vi) implies.(iv). Clearly, (vii) implies (vi). Also, (iii) implies (ii). We
prove the remaining part (ii) by showing that it implies (i). Without loss suppose
t=1and z € C1 N ﬂ;-vzz int C;. Next, we pick a neighborhood W of O s.t.
z+W-W CCjforj=2---N.Fixw= (wy,---wn) € H;-Vzl =: W. Then
¢j :=z+w; —w; € Cjforj=1---N and hence w; = (z + w;) — c;. This
implies w € A — B and, since w was chosen arbitrarily, W C A — B. The proof is
complete. ]

We saw in the proof that (ii) implies (i). The converse, however, is false in general:

EXAMPLE 6.4. Let X = {3(N), C; :=C, :=C3:=8 = X*. Then
int Cj =0
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Jori =1,2.3 but
A-B=X.

Proof. Given (x1,x2,x3) € X, we get, since S is generating, si, s,t1,t2 € S
s.t.

T — X3 =83 — 81 and Ty —x3 =1 —t5.
Now define

by := s1 + 13, by := s + 1, b3 := sy + 14, a:=zx1+s1+1
and check that

(z1,22,23) = (a,a,a) — (b1, b2,b3) € A — B.

This completes the proof. m]

REMARKS 6.5.

e As far as we know, condition (i) is one of the best conditions guaranteeing
linear convergence to a point in ﬂf;l C;. Indeed, as we just saw, it is more
general than condition
(iii) which was proposed by Pierra [18, Theorem 1.1.(ii).(a)].

(i) which was proposed by Gubin et al. [14, Theorem 1.(a)] who obtained
linear convergence for the cyclic projection algorithm.

e If condition (iv) holds and the Cj’s are affine closed subspaces, then (by
Theorem 4.11) the rate of convergence is independent of the starting point!
Of course, the same is true if (v), (vi) or (vii) holds.
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