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Abstract: We prove the following result on an asynchronous projection method:

Let X be a Hilbert space and U, V be two closed subspaces with corresponding orthogonal projections A, B. Fix two points

Zo,z1 € X and define the sequence () by

Ty 1= %Ba:,._l + %Az,._g, Vn > 2.

Then () converges to C(3zo + £z1), where C is the orthogonal projection onto U N V.

The proof is an interesting blend of combinatorics and analysis; the combinatorial part is done with Maple.

Introduction
SETTING. Throughout this paper, we assume the following:
e X is a Hilbert space;

e U,V are closed subspaces with orthogonal projections
A, B;

e (' is the orthogonal projectiononto U N V.
(Recall that a Hilbert space is a complete inner product space
such as IR". For basic properties of orthogonal projections
see [4] or almost any other text on Functional Analysis.) For-
mulated in our setting, the convex feasibility problem con-
sists of finding a point in the intersection of U and V. This
problem, which occurs frequently in applications (see [1, 2]

and the many references therein), can be solved iteratively
provided the orthogonal projections A and B are computable:

Fact 1 (von Neumann, 1933) Let yo € X and generate the
sequence of alternating projections

(yo, Ayo, BAyo, ABAy(], BABAy(], ABABAyo, . )

Then (y,) converges to Cyo.
von Neumann's result is remarkable because

o the sequence (yn) converges in norm; something one
cannot take for granted in infinite-dimensional spaces.

e the limit is independent of the order of the subspaces
in the sense that the sequence

(yo, Byo, AByo, BAByq,...)
also converges to Cyp.

o the limit of (y,) is not only a solution of the convex
feasibility problem but also the solution of a more am-
bitious best approximation problem.
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von Neumann's method is a sequential method — in contrast
to a parallel method such as ‘

Yn = 3Byn_1+ 3AYn_1,

where the two operators A and B can simultaneously work
on computing Ay,—; and By,—;. Both methods fall un-
der the larger umbrella of projection methods, which derive
the new iterate y,, by the application of a well-behaved map
(which could even depend on n) to the immediate predeces-
sor y,—1. In a related though different context, Chazan and
Miranker [3] (see Strikwerda's [12] for a recent reference)
suggested the even more general asynchronous (sometimes
also called “chaotic”) projection methods where the new it-
erate y, depends not only on y,_; and n but possibly also
on all previous iterates ¥, —2,...,¥o-

The aim of this paper is to analyze the following proto-
type of an asynchronous projection method in some detail:

z9, 71 € X. Ty = -21-an_1 + %Azn_z, Vn > 2.

The Computer Algebra System Maple is shown to be very
useful for investigating this iteration.

The paper is organized as follows. Relevant extracts from
the Maple session are presented in Section 2; in particular,
it contains the representation and subsequent analysis of the
iteration. In Section 3, we combine the combinatorial in-
formation gained in Section 2 with von Neumann's result
and an extension of a summability result by Toeplitz in or-
der to prove that the sequence (z,) converges to C (%xo +
%xl). The computability of orthogonal projections in Eu-
clidean spaces via the Moore/Penrose inverse is discussed in
Section 4.

The combinatorial part: done with
Maple

If one writes down some iterates by hand, using the basic
facts A2 = A and B2 = B, one quickly discovers that the
term z,, (Where n > 2) can be written as

7?Az0+7?7BAzg+??ABAzo + - +
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1?Ax1+7?"BAx1+??ABAzy +--- +
7Bz, +??ABx,+7?BABxy +---,

where the “??” stand for some nonnegative coefficients. Note
each term in the first row ends in Az, each term in the sec-
ond row ends in Az,, and each term in the last row ends in
B . ‘

We collect all these coefficients in matrices named A0,
Al, B1l. We explain what the entries of these matrices are by
an example. Consider

- (%Azo+%(BA)zo) + G(BA)xl)

1 1
+ (§BZ1+Z(AB)I1)

The fourth term of the sequence is z4. It determines the
fourth rows of the matrices. According to the coefficients,
the non-zero entries in the fourth row of the matrices A0,
Al, Bl are

A0[4,1) =1, A0[4,2] = L, A1[4,2] = &,
Bi[4,1] =1, B1[4,2] = L.

In other words, the (n,m)-entry AO[n,m] of the matrix A0
(where n > 2) is the coefficient for z,, appearing in front of a
product of m alternating operators applied to zo and ending
in Azg:

ZTp=---+ A0n,m|(:-- ABA)zo +---.

m operators

We define the matrices Al and B1 analogously. For conve-
nience, we set the first row in every matrix identically equal
to zero.

The determination of these coefficients — a trivial though
tedious job — is easily achieved by the following Maple
code:

> with(linalg): N := 40: # N matrix size.
Warning: new definition for norm
Warning: new definition for trace

> A0 := matrix(N,N,0): Al := matrix(N,N,0):
> Bl := matrix(N,N,0):

> A0[2,1) := 1/2: B1[2,1] := 1/2:

> A0(3,2) := 1/4: A1[3,1] := 1/2:

> B1(3,1] := 1/4:

> for n from 4 to N do for m from 1 to N do
> if type(m,odd) then # m is odd

> ' if m=1 then

> AO0[n,1] := (1/2)*A0[n-2,1];

> Al[n,1] := (1/2)*Al[n-2,1];

> Bl[n,1] := (1/2)*Bl[n-1,1];

>° else #m is odd and bigger than 1

> AO0[n,m] := (1/2)*(A0[n-2,m]+A0([n-2,m-1]);
> Al[n,m} := (1/2)*(Al[n-2,m]+Al[n-2,m-1]);

> Bl[n,m] := (1/2)*(Bl[n-1,m]+Bl[n-1,m-1]);
> fi;

> else # m is even )

> A0[n,m] := (1/2)*(A0[n-1,m-1}+A0[n-1,m]);
> Al[n,m] := (1/2)*(Al[n-1,m-1]+Al[n-1,m]);
> Bl[n,m] := (1/2)*(Bl[n-2,m]+Bl[n-2,m-1]);
> fi;

> od; od;

Before we take a look at the so-created matrices, we test
our code through the following “pretty output” routine:

X := proc(n)

global A0,Al1,Bl; local x,A,B,AB,BA Kk,
vAO,wAO0,vAl,wAl,vBl,wBl;

vAQ := row(AO,n); vAl :
vBl := row(Bl,n); wAO
wAl := vector(N); wBl :
for k from 1 to N do
if type(k,even) then

row(Al,n);
vector (N) ;
vector (N) ;

wouwn
wuwn

wAO[k] := “*(BA)"(k/2)*x[0];
wAl[k] := ““(BA)"(k/2)*x[1]);
wB1l([k] := " (AB) " (k/2)*x[1];

else
wAO[k] := " (AB) " ((k-1)/2)*ax[0];
wAl[k] := " (AB) " ((k-1)/2)*ax[1];
wB1l([k] := “*(BA)"~((k-1)/2)*Bx[1];

fi;

od;

** (innerprod (vA0,wA0)) +

‘Y (innerprod(vAl,wAl)) +

* Y (innerprod(vBl,wBl)) ;

end:

This code works very well for exploring terms of the se-

quence. For instance, > x[5]=X(5) ; results in

VVVVVVVVVVVVVVVVVVVVYV

3 1

1 1
+<ZA(L‘1+—8~(BA)$1)

L o+ (4B )ar+ L (BA)Be
7 ts 1t3 !

The corresponding output for >x[13]=X(13); is al-
ready several lines long; the iterates become quickly very
complex. Let us see part of the matrix A0 by issuing the
command

> submatrix(aA0,1..11,1..9);
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0 0 0 0 0 0 0 0 0

-;—0 0 0 0 0 0 0O
1

0 1 0 0 0 0 0 00

1 1

1 g 0 0 0 0 0 0 0
3 1

OIE § 0 0 0 0 0 O

1 3 1 1

§3_2EE0 0 0 0 O
7 5 1

06_43_2E0 0 0 0 0
7 5 7 1

6 128 64 64 3 © 0 00
15 17 3 1 1

O 5% 18 32 3 o6 ©° 00

1 15 17 29 9 3 o

32 512 256 256 128 128

0 31 49 23 1 3 1 0 0
: 1024 512 256 16 64 128 .
It is easy to spot the pattern in the first and second column
of this matrix. However, already the third column is difficult
to do “by eye”. So let us extract the third column of the
matrix A0 and multiply by powers of 2 to “integerize”:

> 1 := col(A0,3):

> for n from 1 to N do 1[n]:= 1[n]*2"(n-2):

> od:
> eval(l);

[0000115517 174949129129 321
321769 769 1793 1793 4097 4097 9217 9217
20481 20481 45057 45057 98305 98305 212993
212993 458753 458753 983041 983041 2097153
2097153 4456449 4456449]

Ignoring the double occurrences, the question arises: what
is this sequence 1, 5,17,49,129,321,...?

Questions of this kind are often easy to answer provided
one knows Sloane and Plouffe's Encyclopedia of Integer Se-
quences [11]: our sequence is labeled M3874 and its gener-
ating function is 1/((1 — z)(1 — 22)2).

This clearly suggests trying to find generating functions
for all columns of the matrix A0. (We recommend [6, 14]
as excellent references on generating functions.) ‘With the
Maple package gfun [10], this is a matter of only a few
lines:
for m from 1 to 6 do
gen_func_for_column.m := factor(

guessgf ( convert(col(AO,m),1list), z)[1l]);
od;

VVVYV

z

en_func_for _col 1:=—-——
gen_func_for_column o

ZZ

(z—-2)(22-2)

gen_func_for_column2 :=

z4

T (2-2)(2-2)?

gen_func_for_column3 :=

z5

(-2 (2 -2

Z7

(z-2)2(2-2)

ZS

(z-2p(2-2)

Although this approach eventually fails, with the default
series length parameter settings in gfun, already these few
columns suggest the general form of the generating function.
Using the common notation [2"]f(z) = fn where f(z) =
Y- fn2z", we can summarize our findings as follows:

gen_func_for_columnj :=

gen_func_for_columnb := —

gen_func_for _column6 :=

Observation 2 Suppose n > 1. The entries of the matrix
A0 are described by

_23k+1
AO[r, 2k +1] = ["7"] ((z = 2)k(22 - 2)"“) p e
and
z3k—1
AO[TL, 2k] = [Zn_l] (m) > Vk Z 1.

We were tempted to try to find closed forms for these
column sequences. With Maple's genfunc package and its
rsolve command, this is indeed possible in theory. We ob-
tained closed forms for up to column 13 of the matrix A0Q;
however, even the simplified closed forms go on for sev-
eral pages. In other words, it is hopeless to expect “simple”
closed forms. (The cause for our “despair” is explained in
Remark 6.)

In contrast, rsolve does discover a closed form for the
row sum of the matrix A0:

Observation 3 The n'® row sum of the matrix A0 is given
by

1 2 /-1\"
;AO[n,m] = 3 + 5 (-2—) , Vn>2.

The procedure can be repeated for the other matrices, A1
and B1. Altogether, we obtain the following two results:

Theorem 4 The (n,m)-entries of the matrices A0, A1, B1
(where n,m > 1) are given by
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m=2k+1
AO[n,m] | ["7'] ((z _ 2)_1:23;:+_1 2)k+1)
_3k+2
Al[n,m] [2"7"] ((Z _ 2)1:?,2 _ 2)k+1)
Bln,m] | [z"7"] ((z _ 2)_1:-20-?(:: _ 2)k)
and
m = 2k

00 | ) (G

i) | ) (=)

il | ) (e=apay)

Theorem 5 The n'® row sums of the matrices A0, A1, Bl
(where n > 2) are given by

matrix | n'® row sum
1 2/-1\"
40 §+§(T)
1 4 /-1\"
o 143
1 2/-1\"
Bl 3*3(7)

Remark 6 We outline proofs of Theorem 4 and Theorem 5
rather than giving full details.

Let us start with Theorem 4. For each matrix, closed
forms for the entries in the first columns are easily verified
“and so are the statements on the corresponding generating
functions. This suggests a proof by induction on the col-
umn and already yields the base case. The induction step is
done by considering two cases: the column is odd or it is
even. (This can be avoided for the price of rather cumber-
some formulae involving the floor function.) Having already
a guess for the solution, the induction step is readily com-
pleted by arguing similarly to Graham et al.'s [6, Section 7.3,
Example 3]. (Of course, using this approach also leads to the
discovery of the generating functions!)

Theorem 5 is much easier to prove. Indeed, for each ma-
trix, the corresponding recurrence relation for the row sum
is of the form r, = 3rn_1 + %r,._z (with the appropriate

boundary conditions). These recurrence relations are readily
solved (either by hand or by Maple's rsolve command).

The results in [6, Section 7.3] — in particular, the Gen-
eral Expansion Theorem for Rational Generating Functions
on page 341 — show in hindsight why it was naive to expect
a general closed form for the entries in each matrix.

The main result -

Fact 7 (Toeplitz, 1911) Suppose T is a Toeplitz matrix, i.e.,
an infinite matrix of real numbers (t, ) with

@) li'r.n thm =0, Vm;

(ii) sup E |tn,m| < +o0;
n
m

(i) im ) tam = 1.
m

Suppose further (y,) is a sequence in X that converges to
some y € X. If the following series exist

Zp 1= Zt,.,mym, Vm,
m

then the sequence (2,,) converges to 7y.

Remark 8 The classical Toeplitz result arises when X =
IR and r = 1; fortunately, the proof of [13, Theorem 7.85]
works in the more general situation of Fact 7 just as well.

Remark 9 There is another kind of matrix commonly called
a Toeplitz matrix, namely a matrix constant along diagonals.
We do not use such matrices here.

We are now ready for the main result.
Theorem 10 The sequence (z,) converges to

C(3zo + 21,).

Proof. Recall that z,, (where n > 2) can be written as
the sum of three sums in the following way:
ZAO[n m] .- ABA zo +
m operators
ZAl[n, m] - ABA 71+
m operators
Z Bl[n,m] .- BAB .
m operators
On the one hand, Theorem 4 and Theorem 5 show that A0,
A1, and B1 are Toeplitz matrices. On the other hand, Fact 1
implies that the corresponding three sequences of alternat-
ing projections (zo, Az, BAzo,...), (z1,Az1, BAr1,...),
(z1,Bz1,ABz,...) converge to Czg, Cz1, Czy respec-
tively. Altogether, Fact 7 ylelds that (z,,) convergesto Cxo+
101131-]-1021 C(3$o+ .’El)
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Remark 11 If X = U =V = IR, then A = B = I (here
and later I stands for the identity map) and the iteration be-
comes T, = %xn_l + %zn_z. In this case, we can directly
deduce that (z,,) converges to 3zo+ 2z, (which s, of course,
in accordance with Theorem 10 since U NV = IR and hence

C=1.

Remark 12 Theorem 10 shows that the most simple instance
of an asynchronous projection method requires already a
somewhat involved analysis. Results on more general asyn-
chronous projection methods are thus likely very compli-
cated. However, we believe that our approach will generalize
to

o finitely many closed subspaces (instead of just 2);
o fixed weighted coefficients (instead of %, %); and

¢ idempotent (instead of orthogonal

projections).

operators

Computing orthogonal projections

In this section, we briefly describe how one actually com-
putes orthogonal projections onto subspaces in IR".

Suppose a subspace U is given as the linear span of vec-
tors (not necessarily linearly independent) which we collect
as column vectors in a matrix M. Interpreting M as a lin-
ear mapping, we can identify U with the range of M. Then
the orthogonal projection onto U is M M1, where M1 is the
so-called Moore/Penrose inverse of M ; see [7, Section I1.2].
(Groetsch's monograph [7] is an excellent reference on
Moore/Penrose inverses, which are also called generalized
or pseudo inverses.)

There are various ways to compute the Moore/Penrose
inverse. One particularly suitable for Maple is the Tihonov
Regularization; see [9, Exercise 7.3.9] or [7, Example I1.3.5]:

Mt = lim, M*(MM* +tI)~L.
t—
The following Maple code describes the procedure

MPinv which expects a (not too large) matrix and returns its
Moore/Penrose inverse:

> MPinv := M -> map( limit,

> evalm(transpose(M) &* (M &* transpose (M)
> + t*&* ()" (-1)),
> t=0, right):

(This is similar to the code in [8].)

As the reader might guess, computing orthogonal projec-
tions by hand is not much fun and prone to errors. There is
another way of calculating the Moore/Penrose inverse using
the Singular Value Decomposition; see [9, Exercise 7.3.7] or
[5, Section 5.5.4]. However, implementations of this method
are less useful for handling matrices with nonnumeric entries
(but more suitable for large matrices). To illustrate the power

of the Maple code, we examine a “symbolic example”:
>M := matrix( [ [1,0] , [0,epsilon] ,
[0,0] 1):

10
M:=]0 ¢
00
The Moore/Penrose inverse of M is computed via

>MPinv (M) ;
1 0 0
0 l 0
€

This example demonstrates the great numerical sensitivity of
Moore/Penrose inverses; see [5, Section 5.5.5] (the reader be
warned that the formula for M T given there contains a typo).

Conclusion

We have analyzed an asynchronous projection method itera-
tion by following the steps below.

Step 1 To build intuition, we used Maple for computing iter-
ates and generating data in form of (infinite-dimensional)
matrices.

Step 2 We employed Maple's gfun package to study the
obtained data; this allowed us to “guess” general gen-
erating function formulae for columns of the matrices.
(The formulae can be proved rigorously, of course.)

Step 3 Using a result from Classical Analysis, we were able
to prove that the iterates converge and to determine the
limit. '

The combinatorial work was thus entirely done by Maple.
Also, the computation of the iterates is easy (via the Moore/
Penrose inverses) because of Maple's symbolic capabilities.

In summary, Maple put an expert in generating functions
on our desks suggesting a painless and fun analysis of the
iteration that led to a complete solution.
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