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THE METHOD OF FORWARD PROJECTIONS

HEINZ H. BAUSCHKE" AND DOMINIKUS NOLL

ABSTRACT. The convex feasibility problem asks to find a point in the intersec-
tion of finitely many closed convex sets. It is of basic importance in various areas
of mathematics and physical sciences, and it can be solved iteratively using the
classical method of cyclic projections, which generates a sequence by project-
ing cyclically onto the sets. In his seminal 1967 paper, Bregman extended this
method to non-orthogonal projections, using the notion of the Bregman distance
induced by a convex function.

In this paper, we present a new algorithmic scheme which also extends the
method of cyclic projections. Based on Bregman distances, we introduce a new
type of non-orthogonal projection, the forward projection. The energy and the
negative entropy allow forward projections — the former yields the classical or-
thogonal projection whereas the latter gives rise to a type of projection used
implicitly in a manifestation of the Expectation-Maximization algorithm. We
provide useful properties of forward projections, and a basic convergence result
on the method of forward projections.

1. INTRODUCTION

Various problems in mathematics and physical sciences can be recast in terms of
the convez feasibility problem:

Given closed convex intersecting sets Ci,...,Cy,
find a point in C :=C1N---NCy.

Here, the points in the intersection are thought of as the set of solutions for a
given problem, and the sets Cj,...,Cn represent some constraints. Assuming it
is possible to compute the orthogonal projection P; onto each constraint Cj;, the
classical method of cyclic (orthogonal) projections generates, given a starting point
Yo, a sequence (y,) by projecting cyclically onto the constraints:

P, P, Py P, P
Yor—Nr—2Y2 2 YN YNy1 —> -

The method is known to work in Euclidean space (and even in Hilbert space):
indeed, the sequence (y,) converges to a point in C. This result is due to Bregman
[7]; see also [1, 10, 12, 20] for recent pointers to numerous extensions.

In 1967, Bregman [8] generalized his result to non-orthogonal projections, which
can be constructed as follows: for a sufficiently well-behaved convex function f,
define the so-called Bregman distance between two points z and y by

Ds(z,y) = f(z) — fy) — (f'(¥),z — y).
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Dy is not a distance in the sense of metric topology; for instance, Dy is generally
not symmetric. However, if f = 1| - ||2, then Df(z,y) = 3llz — y||>, and one
essentially recovers the orthogonal case. By taking infima, distances between points
induce naturally distances between points and sets. Further, these distances to sets
give rise to corresponding Bregman projections. In the method of cyclic Bregman
projections, each orthogonal projection is simply replaced by the corresponding
Bregman projection. For classical convergence results, see [8, 9]. This result has
also found various extension; however, here we will be concerned with a variant of
the following result, taken from [2]: there is no need to visit the sets in a cyclic
fashion when generating the sequence (y,); it suffices to pick up each constraint
infinitely often — the resulting algorithmic scheme is the method of random Bregman
projections.

In this paper, we extend the method of orthogonal projections in a new direction.
The approach is similar yet different to the framework of Bregman projections: the
similarity is the construction of a non-orthogonal projection using the Bregman
distance; the difference is that our new type of projection is truly distinct from
a Bregman projection. To explain this further, let us fix a set S. The classical
Bregman projection of a point z onto the set S is the set of minimizers of the
problem minscs D¢(s, z). In contrast, we propose the forward projection of z onto S,
defined as the solution of the optimization problem minsecs Df(z,s). Existence and
uniqueness of forward projections requires suitable assumptions on the underlying
function f. As before, orthogonal projections can be recovered by setting f = 1||-||°.
(In fact, this is essentially the only way to make Dy symmetric.)

The aim of this paper is to analyze forward projections, and to provide a basic
convergence result for the method of random forward projections.

The paper is organized as follows. In Section 2, we formulate our assumptions
on f, followed by a discussion on verifiability. Covered by these assumptions are
the perhaps two single most important functions in convex analysis: the energy and
the (negative) entropy. One particular assumption on f, namely joint convexity of
Dy, will imply that the Bregman distance of the Bregman distance is nonnegative,
a quantity crucial to our analysis. Forward projections are defined and studied in
some detail in Section 3. Our main result — the sequence generated by the method
of random forward projections is convergent to a solution — is proven in Section 4.

2. ASSUMPTIONS AND SOME FACTS

The standing assumptions. From now on, we will assume that

f:R) = ]—o00,+00]

satisfies the following:

A1l: f is a convex function of Legendre type;

A2: f” exists and is continuous on int dom f;

A3: Dy is jointly convex;

A4: D¢(x,-) is strictly convex on intdom f, Vz € int dom f;
A5: D¢(z,-) is coercive, Vz € int dom f.

Remark 2.1. Some comments on the assumptions are in order.
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A1l: The notion of a Legendre function is due to Rockafellar; we refer the
reader to [23, Section 26] and also to [2] for basic properties and examples.

A2: In practice, this condition almost always holds.

A3: The joint convexity of Dy is discussed in detail in [3]; see also Remark 2.11
below. '

A4: This is needed to make (forward) projections uniquely defined. In the
usual separable setting, this is essentially a consequence of A3! See Re-
mark 2.15 below.

AS5: Since f is Legendre (assumption A1), we can state an equivalent condition
[2, Corollary 3.1]: dom f* is open.

The most important examples are the energy and the entropy — we state this
now; however, we postpone the proof until a little later.

Example 2.2. The following functions satisfy A1-AS5:
(i) f(2) = 3llell® = § X5, I2;I* (energy);
(ii) f(z) = Z}'I=1 zjlIn(z;) — z; (entropy).

The Bregman distance.

Definition 2.3 (Bregman distance). Suppose g : X — ]|—o00, +o0] is differentiable
on intdom g # 0. Then the Bregman “distance” [8] is the map

9(z) —9(y) — (¢'(y),z —y), ify € intdomg;

Dy,: X xX :(z,y) —
g (,9) {+oo, otherwise.

Example 2.4. Suppose z and y both belong to int dom f.

(i) If f is the energy, then Dy(z,y) = 3|z — y||.

(ii) If f is the entropy, then Df(z,y) = Ele zjln(z;/y;) — x; + y;.
Remark 2.5. In the entropy case, the Bregman distance (restricted to the simplex)

is widely known as the Kullback-Leibler Information Divergence; see, for instance,
[18].

The next facts are basic and useful.

Fact 2.6. [23, Theorem 25.5] Suppose g : X — ]—o00,+00] is differentiable on
intdomg # 0. Then ¢ is continuous on intdomg. In particular, D, is continuous
on (int dom g)2.

Fact 2.7 (Three-Point Identity). [11, Lemma 3.1] Suppose z € dom f and y,z €
intdom f. Then D¢(z,y) + Ds(y, z) — Dys(z,2) = (f'(y) — f'(2),y — ).

Proposition 2.8. Suppose g : X — ]—o00, +00] is differentiable on int dom g. Sup-
pose further that z,y are two points with [z,y] C intdomg. Then:

(i) 9l(z,y) is convex & Dy(z,y) > 0.

(ii) gl[z,y is affine & Dy(z,y) = 0.

Proof. This is essentially [22, Theorem 42.A]; see also [3, Section 2]. O
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The Bregman distance of the Bregman distance. Assumption A3 on joint
convexity of Dy makes the Bregman distance of the Bregman distance meaningful.
The following two results are new and important to our analysis.

Lemma 2.9 (Key identity). The map Dp, is nonnegative and continuous on
(int dom f)*. Given four points z,y, o, yo in int dom f, we have:

DDf((xay)7 (xO,yO)) = Df(x?y) + Df(.’l,',il,‘()) - Df(x,yO)
+ (" (30)-(zo — Y0), ¥y — o)-

Proof. Because Dy is jointly convex, the nonnegativity of Dp, on (intdom f )4 is
clear from Proposition 2.8.(i) (with g = D). Note that the derivative of Dy at
(zo,¥0) is (f'(zo) — f'(30), f"(y0)-(yo — Z0)); this and Fact 2.7 yield immediately
the key identity. Now Dj is continuous on (intdom f)? (by Fact 2.6), and f”
is continuous on intdom f (by assumption). The desired continuity of Dp, thus
follows from the key identity. ]

Lemma 2.10. Suppose ¢,z,y are in intdom f with Dp,((c,c),(z,y)) = 0. Then
z=y.

Proof. By Proposition 2.8.(ii), Dy is affine on [(c, c), (z, y)] . This means
Df((l - t)(c’ C) + t(ma y)) = (1 - t)Df(C, C) + th(xyy)
= tDy(x,y),
for every t € [0,1]. By definition of Dy, we have
Ds((1 - t)(c,c) + t(z,y)) = Ds((1 = t)c + tz, (1 — t)c + ty)
= f((Q - t)e+tz) — f((1 - t)c+ty)
—{(f'((@ =t)c+ty), t(z — y)).
Altogether, we obtain
tDg(z,y) = tf(z) — tf(y) — t{f'(¥),z — v)
= [fle+te-a) - 1] = [flc+ty - <) - £(0)]
' (c+tly-o),(z - y)
Now divide by ¢ € ]0,1[ and let tend ¢ to 0 from above. We deduce
Dy(z,y) = f'(c)(z —c) = f()y —¢) = f'(c)(z —y) = 0.
Therefore, x = y, and the proof is complete. d

Remark 2.11. The joint convexity of Dy is discussed in some detail in [3]. If

f is (separable, or even) of the form f(z) = Z]{__l ¢(z;), then the problem is
essentially one-dimensional. Assume that ¢ is four times differentiable. Then, by
[3, Theorem 3.3.(i)],

Dy is jointly convex
o w/"’a”” Z 2(('0/”)2
& P8 +¢"(s)(s—1) > (cp"(s))z/go”(r), for all , s in int dom ¢.
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It is straight-forward to see that the energy and the entropy pass the condition
involving ¢""; moreover, as pointed out in [3, Remark 3.6], these two functions are
limiting cases in the class of convex functions with jointly convex Bregman distances

in the sense that they make the inequality even an equality!
For the energy and the entropy, this can be made short and explicit:

Example 2.12. Suppose z,y, o, yo all belong to int dom f. Then:

(i) If f is the energy, then Dp, ((z,y), (z0,%0)) = Dy (z,y + (z0o — v0))-
(i) If f is the entropy, then Dp, ((z,v), (z0,0)) = Dy (z,y - %3)

Remark 2.13. We note that Example 2.12 yields — in conjunction with Propo-
sition 2.8 — the joint convexity of the Bregman distance induced by the energy
and the entropy with a proof distinct from the characterization mentioned in Re-
mark 2.11. Furthermore, since both the energy and the entropy are strictly convex
on the interior of their respective domains, Example 2.12 also results in a direct
proof of Lemma 2.10.

Strict convexity of D¢(z,-).

Proposition 2.14. Suppose the map intdom f — X : y — f"(y).(y — z) is strictly
monotone, for all z € intdom f. Then Dg(z,-) is strictly convex, for every z €
intdom f.

Proof. Fix z € int dom f. The derivative of the map y — Dy(z,y) is easily seen to
be y — f"(y).(y — z), which is strictly monotone by assumption. Strict convexity
thus follows (from [22, Theorem 42B], for instance). O

Remark 2.15. It is worthwhile to visit the (separable) case when f(z) =
Z}']=1 ¢(z;), for some function ¢ defined on R. Assume that ¢ is even three times
differentiable. The strict monotonicity condition of Proposition 2.14 — and hence
strict convexity of Ds(z,-) — then boils down to strict positivity of the derivative
of the map s — ¢"(s)(s — r):

(Vr € intdom ¢)(Vs € intdom ) "' (s)(s — 1) + ¢"(s) > 0.

Now we notice something immensely convenient: in this separable setting, the last
strict inequality is always satisfied because of joint convexity of Ds (assumption
A3) and Remark 2.11! In passing, we note that one can thus view A4 not only as
less restrictive than joint convezity of Dy, but also as more restrictive than separate
convezity of Dy (by [3, Theorem 3.3.(ii)]). Moreover, these observations apply to
the energy as well as the entropy, and they yield A4 for these two functions.

More examples.

Example 2.16. The following functions satisfy the assumptions A1-A5:

(i) the energy f(z) = }'I=1 z3;

(ii) the entropy f(z) = E;zl zjIn(z;) — z;.
(iii) the Fermi-Dirac entropy f(z) = Z]J=1 zjlIn(z;) + (1 — z;) In(1 — z;).



196 HEINZ H. BAUSCHKE* AND DOMINIKUS NOLL

Proof. We start by noticing that every function is separable and infinitely differ-
entiable on its domain — this will make life much simpler: A2 clearly holds, for
instance.

A1: Legendreness of (i), (ii), and (iii) is known, see [2, Section 6].

A3: Joint convexity of Dy was established in [3].

A4: Clear, since our setting is separable and so Remark 2.15 applies.

AS5: In view of Remark 2.1, we need only to check that dom f* is open. But
this is clear for the three functions [2, Section 6]: the conjugate of f in (i), (ii),
and (iii) respectively is (the separable extension of) (i) r — %’rz, (i1) exp, and (iii)
r — In(1 + exp(r)). So the domain of each conjugate is the entire space (which is
open). O

We conclude this section by collecting some properties that will be useful later.

Fact 2.17. Suppose = € int dom f and (yy) is a sequence in int dom f. If (Dg(z, yn))
is bounded, then the sequence (y,) is bounded, and all its cluster points belong to
intdom f.

Proof. [2, Theorem 3.7.(vi) and Theorem 3.8.(ii)]. O

Fact 2.18. Suppose y € intdom f and (y,) is a sequence in intdom f. Then:
yn — y if and only if Ds(y,yn) — 0.

Proof. “=7: (2, Proposition 3.2.(ii)] or an easy direct verification.

“<”: By Fact 2.17, the sequence (y,) is bounded and has all its cluster points
in int dom f. Now suppose to the contrary that (y,) does not converge to y. After
passing to a subsequence if necessary, we may and do assume that y, — 2z €
intdom f. Since Dy is continuous on intdom f x intdom f, it follows that 0 «
D¢(y,yn) = Dj(y, 2). Hence, by essential strict convexity of f, y = z and the proof
is complete. O

Fejér monotonicity with respect to D. The classical notion of a Fejér mono-
tone sequence (taken with respect to the Euclidean metric) has been found tremen-
dously useful in the analysis of algorithms [1, 10, 13, 14]. We will need the following
variant, tailored for the Bregman distance:

Definition 2.19. Suppose S is a set with SNdom f # 0 and (yn)n>0 is a sequence
in intdom f. Then (y,) is Fejér monotone with respect to S if

(Vs € S)(Vn > 0) D¢ (s,yn) = Dys(8,Yn+1)-

Lemma 2.20. Suppose S is a set with SNintdom f # @, and (y,) is a sequence in
int dom f that is Fejér monotone with respect to SNint dom f. Then (y,) converges
to some point in S Nintdom f if and only if all cluster points of (y,) lie in SN
int dom f.

Proof. The “only if” part is clear. To prove the “if” part, observe first that (y,) is
bounded and all its cluster points belong to int dom f (by Fact 2.17). Let s; and s
be two cluster points of (y,), both belonging to S N intdom f. It suffices to show
that s; = sp. By Fejér monotonicity, the sequences (Dy(s1,¥s)) and (Df(s2,yn))
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converge; hence, so does the sequence of differences, whose terms we can write
(using Fact 2.7) as

Dg(s1,9n) — Dg(s2,yn) = (f'(s1) — f'(yn),s1 — s2) — Dg(s2,51).

It follows that A := lim,(f’(s1) — f'(yn), s1 — s2) exists. Taking the limit along the
subsequence converging to s; (resp. sg) yields A = 0 (resp. A = (f'(s1) — f'(s2),51 —
s2)). (This step is justified by the continuity of f’; see Fact 2.6.) Altogether,

(f'(51) = f'(s2),51 — 82) = 0.
Consequently, by essential strict convexity of f, s; = so as required. (|
Remark 2.21. Imposing that f be Bregman [9, 10] or Bregman/Legendre (2], we

could extend Lemma 2.20 to the case where the sequence (y,) converges to a point
in dom f \ int dom f.

3. FORWARD PROJECTIONS

Definition 3.1 (Forward projection). Suppose S is a closed convex set with SN
intdom f # 0, and z € dom f. Then the set
arginf D¢(z,y)
y€SNintdom f
is called the forward projection of z onto S and denoted ?g(m) If ?S(x) is a

singleton, say {y}, we will write ?g(x) = y in a slight (but convenient) abuse of
notation.

Remark 3.2. The direction of the arrow points forward (to the right), this is meant
to help the reader remember that we vary over the right-hand variable y in D¢(z, y)
when we compute the projection. The arrow notation is required to distinguish the
new projection from its cousin, the classical Bregman projection [8]: given S with
SNdom f # 0 and y € int dom f, the set
arginf Dy¢(z,y)

z€SNdom f
is the (backward) Bregman projection of y onto S and denoted Ps(y). See, e.g., [2]
and [10] for further properties and examples.

Is the notion of a forward projection really a new one? The answer is affirmative,
as the next result shows.

Proposition 3.3 (Reid). [21] Let f be the entropy on R. Then there is no function
g: R — ]—00, +00] such that D¢(z,y) = Dy(y,z), for all z,y > 0.

Proof. We argue by contradiction and thus assume that there exists a function g
with
(x)  (Vz2>0)(Vy>0) g(y) —g(z) - ¢'(z)(y — z) =zn(z/y) —z+y.

Taking the derivative with respect to y yields ¢'(y) —¢'(z) = 1—z/y, for all z,y > 0.
Assume y # z, and divide the last equality by y —z. Then (¢'(y) —¢'(z))/(y—=z) =
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1/y. Fix £ > 0 and take the limit as y tends to z. Then ¢"(z) = 1/z, Vz > 0. On
the other hand, consider again (x):

(Vz > 0)(Vy >0) g(y) =9(z) +4'(z)(y - z) +zln(z/y) -z +y.
Take the derivative with respect to z yields 0 = ¢"(z)(y — z) + In(z/y). Now taking

the derivative with respect to y results in 0 = ¢g”(z). Altogether, we obtained the
absurdity 0 = ¢"(z) = 1/z. a

Remark 3.4.
(i) We discovered Proposition 3.3 first in Maple by arguing also by contra-
diction: if g exists so that (*) holds true, then fix y = 1. The resulting
differential equation has the solution

g9(z) = g(1) — zln(z) + (1 — z) dilog(z) + ¢(1 — z),

where ¢ is a real constant, and dilog(z) := lx %%dt By construction,
Dy(1,z) = D¢(x,1), Vz > 0. However, the difference Dy(2,z) — Df(z,2) =
dilog(z) + zIn(2) + 2 /12 — In(4) is zero only when z = 2. Therefore, there
is no function g with the desired properties.

(ii) Greg Reid’s proof of Proposition 3.3 is much preferable to our previous
reasoning; nonetheless, the function

g9(z) = g(1) - zIn(z) + (1 - z) dilog(z) + ¢(1 - z),

just encountered has some quite intriguing properties (which we state here
without proof as they are not needed elsewhere in the paper): D, is ac-
tually jointly convex, but g is not Legendre. In contrast, the (alternat-
ing) derivatives (—1)" - g(® appear to be Legendre, but without gener-
ating a jointly convex Bregman distance. The simplest explicit case is
¢?(z) = ¢"(z) = In(z)/(c - 1).

(iii) Greg Reid pointed out to us that his proof can actually be reproduced
entirely in Maple using Allan Wittkopf’s package rifsimp, which detects
that the corresponding PDE system is inconsistent — this output means
that the argument is actually rigorous!

Lemma 3.5 (Existence and uniquenes_s). Suppose S is a closed convex set with
SNintdom f # 0, and z € intdom f. Then ?s(:z:) is a singleton.

Proof. Pick a sequence (y,) in S Nint dom f such that

D i .
7z, yn) = v thﬁf om £ Dy(z,y)

Clearly, (Df(z,yn)) is bounded. By Fact 2.17, the sequence (y,) is bounded and
all its cluster points belong to SNintdom f. It follows that @ # ? (z) C intdom f.
By joint convexity of Dy, ? s(z) is convex subset of intdom f. Furthermore, we
assumed that the map Dy(z,-) is strictly convex on intdom f. Altogether, ?5 (z)
must be a singleton. a

Lemma 3.6 (Characterization of forward projection). Suppose S is a closed convex
set with S Nintdom f # @, and let zg,yo be in int dom f. Then:
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Yo = 1_3)5(560) & Yo € S and (S — yo, f’(y0)-(xo — o)) < 0.

Proof. The derivative of the map y — Df(zo,y) is y — f"(y).(y — x0). Hence the
characterization is nothing but the optimality condition for a constrained optimiza-
tion problem; see [23, Theorem 27.4] or [6, Section 2.1] O

The following result is crucial.

Corollary 3.7 (Key inequality and continuity). Suppose S is a closed convex set
with SNintdom f # @, and let s € S. Suppose further z, Z both belong to int dom f.
Then

Dy(z,s) + Dy(2,2) > Dy(z, P5(z)) + Do, ((z,9), (, Ps(z))),

and all terms in this inequality are nonnegative. Moreover, the map ?5 is continuous
on int dom f.

Proof. The inequality follows from Lemma 2.9 and Lemma 3.6. The nonnegativity
of the Dy terms is clear (by convexity of f and Proposition 2.8.(i)). And the
nonnegativity of the Dp, term was already observed in Lemma 2.9. Now let (z,,) be
a sequence in (without loss of generality) int dom f converging to z. For simplicity,
set 5§ := Pg(Z) and s, := Pg(zy), for all n. Fact 2.18 and another application of
Lemma 2.9 and Lemma 3.6 yield
Df(i, 3) « Df(.’f, 3)+ Df(.’i‘, Zn)
> Dy(Z,sn)) + DDf ((ja 5), (zn, Sn))
> Df ((Z_I, 3n)°

Hence (Df(Z,sn)) is a bounded sequence. By Fact 2.17, the sequence (sy) is
bounded, and all its cluster points lie in int dom f. We must show that s, — 3.
We argue by contradiction: after passing to a subsequence if necessary, we as-
sume that s, = 3§ € S Nintdom f with § # 5. Clearly, Df(Z,-) is continuous on
intdom f. Thus the displayed inequalities yield, after taking limits, the inequality
D¢(z,5) > Dy(z,8). By uniqueness of Pg(Z) = 3, we conclude § = 3, which is
absurd. The proof is complete. ]
Remark 3.8 (forward vs backward projection). Fix z € intdom f and s € SN
intdom f. If y denotes the forward projection of z onto S, then (by Corollary 3.7)
Df(S,IB) > Df(S,y) + DDI((S,S), (-'B,y))
In contrast, if § denotes the backward projection of z onto S, then (see, for instance,
[2, Proposition 3.16]):
Df(s,l‘) > Df(S,g) +Df(’g,£L‘)

Thus both types of projections have similar inequalities for their respective projec-
tions.

Remark 3.9. It is instructive to view the question on continuity of ?s in the
context of variational inequalities or well-posed optimization problems — the results

from these two areas yield continuity of Ps under additional assumptions such as
compactness of S. For further information, we refer the reader to [16, Section IX.1]
and [17, Section 5].
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Remark 3.10. Corollary 3.7 is not only interesting in its own right, but also useful
in other contexts involving forward projections. For example, the FEzpectation-
Mazimization algorithm for a particular Poisson model can be viewed as an alter-
nating backward/forward projection algorithm (see [15] and also [19]); Corollary 3.7
then yields new asymptotic results [4].

Forward projections onto hyperplanes. Assume now z € intdom f, H = {z €
X : (a,2z) = B} is a hyperplane, where a € X and 8 € R, and assume further that
H Nintdom f # 0.

How do we find .F)H(III)? Using Lemma 3.6, it is easy to see that y = ?H(:z:)
precisely when

(H) f'(y)(z~y)=ra and (y,a) =4,
for some r € R.

Solving (H) in general appears to be difficult. However, for the energy and the
entropy, much more can be said.

Example 3.11. Suppose z € intdomf and H = {z € X : (a,2) = [} is a
hyperplane with H N int dom f # 0.

(i) If f is the energy, then

? <a'1 IE) —b
g(z) =2z - ————a.
llall?
(ii) If f is the entropy, then ?H(.’E) can be found in two steps:
1. Solve };a;z;/(1 +raj) = forr € R
2. Set y; = z;/(1 + ra;), Vj.

Proof. Let y = I_D)H(:z)
(1): for the energy, we have f” = I. By (H), y = £ — ra. Take the inner product
of this equality with a, use (a,y) = 8, and solve for r to obtain the desired formula.
(i1): for the entropy, f”(y) is the diagonal matrix with entries 1/y;. Hence (H)
yields
1 Zj

—(z; —y;) =raj; equivalently, y; =
yj(a:] Yj) = raj; equivalently, y; T+ra;

for every j. Since y € H, we have (a,y) = 8 or
T ez
i%i  _ g
Z 1 + raj 'B
J=1
The result follows. 0O

Remark 3.12 (More on the entropy projection onto a hyperplane).

(i) Simple calculus shows that the function S(r) := 3, a;z;/(1+ra;) is strictly
decreasing. Also, from Step 2 of Example 3.11.(ii), the sought-after r is
bounded by

-1 ) -1
sup — <r< inf —,
j:a;>0 @j J:6;<0 aj
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where we use the usual convention inf) = +oo and sup® = —oo. Hence
even a simple bisection algorithm can be used to determine r efficiently.

(ii) While there is in general no closed form for Py (z), the “inverse projection”
is explicit: fix y € H. Then, for every z € intdom f, we have (from Step 2
in Example 3.11.(ii)) the characterization I_J)H(m) = y if and only if z; =

~ (14raj)y; > 0, V5. Thus the inverse projection results in lines. (In contrast,

the “inverse backward projection” is generally a nonlinear curve.)

(iii) It is not hard to see that Py(z) can be computed ezplicitly in two cases:
when a € R1; or when J = 2, i.e., we work in the Euclidean plane (so that
Step 1 of Example 3.11.(ii) becomes solving a quadratic equation).

Remark 3.13 (Forward projection of a smooth set). Suppose S is a closed convex
set with int S Nintdom f # 0. Recall S is smooth at a point y € bdry S, if the
tangent cone of S at y is a halfspace. Two equivalent conditions are: the normal
cone of S at y is a ray, or there exists a unique supporting hyperplane to S at y.
Now suppose S is smooth, i.e., smooth at every boundary point. Let z and y both
belong to int dom f, where z ¢ S. Using Lemma 3.6, it is not hard to show that
y= 1_3)5(:1:) S y= I_’)H(:z:), and H supports S at y.
(An analogous result holds for the backward Bregman projection.)

The combination of Remark 3.13 and Remark 3.12 results in the following:

Remark 3.14 (Inverse entropy projection of a smooth set). Suppose f is the
entropy, S is a closed convex smooth set with intS Nintdom f # 0, and y €
bdry S Nint dom f. Then the inverse projection of y can be found as follows:

(i) Find the (unique) supporting hyperplane H to S at y.
(ii) Let a be the (unique) unit vector that is normal to H and points outwards
S.
(iii) Then z € intdom f satisfies FS (z) = y if and only if

xzj= yj(l + Taj), V7,

for some r > 0.

In passing, we mention the analogous result for the inverse (backward) projection:
the backward projection of a point z € intdom f is equal to y if and only if

z; = yjexp(ra;j), Vj,

for some r > 0. Thus the inverse projection is a curve, nonlinear in general.

4. MAIN RESULT

From now on, we assume that Ci,...,Cn are finitely many closed convex sets
such that

C:=NX,C; and Cnintdom f # 0.

Let 7: N— {1,...,N} be a random map: r is onto and it assume each value in
{1,..., N} infinitely often.



202 » HEINZ H. BAUSCHKE* AND DOMINIKUS NOLL

The method of random forward projections generates a sequence (y,) by

yo € intdom f, and yny1 := P, (), V¥n > 0.

Theorem 4.1. For an arbitrary starting point yg, the sequence (y,) generated
by the method of random forward projections converges to some point § € C' N
intdom f.

Proof. We proceed in several steps.
Claim 1: Df(C, yn) > .Df(C, yn+l) + DDf ((C, C), (yn, yn+l))a
Vn >0, Vc € Cr(n41) Nintdom f.
This follows from Corollary 3.7 (with § = Cy(n41), T := s := ¢, and g := yn).
Claim 2: (y,) is Fejér monotone with respect to C Nint dom f.
This is immediate from Claim 1.
Claim 3: (y,) is a bounded, and its cluster points belong to int dom f.
Pick ¢ € CNintdom f. By Claim 2, the sequence (Df(c,yn)) is decreasing and
thus bounded. Claim 3 thus follows from Fact 2.17.
Next, suppose that

g is a cluster point of (yn), say yk, — ¥-

Claim 4: § € intdom f, and D¢(y,yx,) — 0.
Clear from Claim 3 and Fact 2.18.

After passing to a subsequence if necessary, we may assume that r(k,) = p €
{1,...,N}, and thus § € C,.

We now define

Iin:={i:g€C;} and Iy :={i: 7 & Ci}.

Claim 5: Iy = 0.
We prove this by contradiction and thus assume that I, # 0. After passing
to another subsequence if necessary, we may further assume that {r(k,),r(k, +
1),...,7(kn+1 — 1)} = {1,..., N} — this is possible, because r is a random map.
Since p € Iijp, we can pick my, in {kn, kn+1, ..., knt1—1} maximal with r(m,) € Iip.
By repeated use of Claim 1, we obtain

D¢(§,Yma) < Ds(¥,Yk,), Vn.
This, together with Claim 4, yields Df(#, ym,) — 0. Hence, using Fact 2.18, y,, —

g. After passing to a final subsequence if necessary, we assume that r(m, + 1) =
0 € Iyt and that yp,,4+1 = Z € Cy Nintdom f (using Claim 3 and closedness of

Cy). Fix c€ CNintdom f. By Claim 1,

‘DDf ((C’ c), (ymn’ymn+1)) - 0.
In Lemma 2.9, we observed the continuity of Dp, on (int dom f )4. Thus

DDf ((Ca C), (g, 2)) =0.
Consequently, by Lemma 2.10, § = z. But this implies the absurdity ¢ € Ii,.
Claim 5 is thus verified.
Conclusion: We have shown that (y,) is Fejér monotone with respect to C' N
intdom f (Claim 2), and that all its cluster points lie in C N int dom f (Claim 5).
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Therefore, by Lemma 2.20, the entire sequence (y,) converges to some point in
CNintdom f. a

Remark 4.2.

(i)

(iii)

The proof is modeled after the proof of [2, Theorem 8.1], which in turn is
standard for random methods; see [2, Remark 8.3]. The new approach is
Corollary 3.7, which relies upon the joint convexity of Dy and which resulted
in (see Claim 1 in the proof of Theorem 4.1) the crucial inequality

Df(ca Yn) > Df(ca Ynt1) + DD; ((ca c); (Yn, yn+1))'

It is instructive to compare this to the key inequality for the sequence (%)
generated by the method of backward projections (see [2, Proof of Theo-
rem 8.1]):

Df(C, gn) Z Df(ca g‘n+1) + Df(gn-i-l, gn)

See also Remark 3.8.

For applications, it would be desirable to have a convergence result allow-
ing for C Nintdom = @. In the standard (backward) Bregman projections
setting, this case can be accommodated by imposing further properties on
f, for instance, that f be Bregman [9, 10] or Bregman/Legendre [2]. Unfor-
tunately, this technique is not applicable here: the stumbling block in the
proof appears to be Claim 5, which relies on Lemma, 2.10 to obtain unique-
ness of the cluster points. However, Lemma 2.10 in turn requires the points
to lie in intdom f. In essence, this is closely related to the previous item (i):
for backward projections, the crucial term D(§n41,%n) is independent of c;
however, this is not true for the corresponding term Dp, ((¢,©), (Yn, Ynt1))
in the forward projections context.

Preliminary numerical experiments (using two lines intersecting in the posi-
tive orthant, using forward entropy projections; see Section 3) indicate that
the qualitative behavior of forward entropic projections is similar to orthog-
onal (energy) projections. A more detailed numerical study would be an
interesting topic for further research.
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