
Data Documentation and Retrieval Using Unity in a

UniVerse® Environment

Your Name

University of Iowa, Iowa City, Iowa

 E-mail Address

Introduction

Data storage, however well implemented, is worthless without the ability to
retrieve that data. While the logical and physical connections may be available, if the
data layout is not well documented, it may be near impossible to retrieve the data except
through previously developed interface programs. These programs may be limited in
their implementation based on static ideas of their use. In order to implement new
interface methods, it is necessary to have complete documentation. It may be possible to
use an automated approach to document the tables and fields of a database system This
project will explore using Unity[1], and ODBC connectivity to document a large system
of tables in a UniVerse®[2] environment. It will also explore using a set of host based
programs to generate equivalent documentation, and the modification of Unity in order to
produce RETRIEVE queries used by UniVerse® instead of standard SQL queries used by
typical ODBC data sources. The remainder of this proposal will examine motivation for
the project, the project architecture and associated details.

Motivation

In an ideal situation, a company that creates a piece of software would document
it, and understand it before selling it. In the same ideal situation, a company that creates
and sells a suite of software with hundreds of tables would understand and document the
complex interactions of these programs and tables. Each field of every table would be
documented and, hopefully with little effort, that company would be able to tell which
programs required each field. However, not all programmers are software engineers, and
not all companies that create software do it by using the appropriate methods. The type
of documentation described takes time, and time is money, especially in environments
where hourly rates charged to customers are above one hundred dollars and projects
range in the hundreds of thousands of dollars. Given a limited budget a client company
might choose additional functionality over complete documentation and therein lies the
root of the problem. Incomplete documentation when it comes to software systems of
any magnitude is equivalent to no documentation. Any additional changes to the
software or database system must be researched heavily and the only testing that will

suffice is full integration with the “live” suite.
Once a client company has made a decision for functionality over documentation,

it is up to the client company programmers and analysts to take up the challenge of
documenting the suite of tables and programs and to integrate them with other business
tools. Unity[3] is a tool for documenting ODBC accessible data with X-Specs in a semi-
automated manner. Some limitations exist in using an ODBC client to access the data
necessary to create X-Specs for the UniVerse® environment. Thus it would be preferable
to use host tools to create the X-Specs using programs on the host system which provide
more information about relationships and data than would be accessible to an ODBC
client. Once these X-Specs are created, Unity can be used to build data queries to access
the data. By documenting tables more precisely using X-Specs, the complexities of
future modifications to the system are reduced.

Details

This aim of this project is to evaluate the efficiency and efficacy of developing X-
Specs using Unity verses creating the same X-Specs using a host based system of
programs. To do this, a sample set of tables will be identified from those in use at a local
company. Using Unity, these tables will be explored and mapped. Thereafter, host
programs will be developed in order to create X-Specs using internally available data that
is not available to the ODBC client. The resulting X-Specs will be compared in order to
evaluate the different approaches. Additionally, Unity will be modified to create host
specific queries. These queries will be aimed at accessing data in its native environment.

Environment

This project will entail examining the use of Unity and X-Specs in conjunction
with a UniVerse® hosted database system. Unity is a Windows based tool for integrating
multiple database types. In this situation the database system will be hosted on an
RS6000 system with an AIX operating system. The client system, running Unity, will be
a machine running a Windows 2000 professional operating system.

UniVerse® is a relational database environment from IBM with built in ODBC
connectivity and its own programming language called UniBASIC®. Each database
under UniVerse® is composed of a number of tables. These tables contain a collection of
fields associated with records with unique identifiers. Each table has a dedicated table
dictionary that defines the fields available for reporting. This table dictionary does not
always contain an entry for each field in the table. An entry in the file dictionary contains
the information required to retrieve and display the data from the field it pertains to in the
table. This can include formatting instructions, conditional statements, and a label for the
data among other things. One of the interesting aspects of this dictionary table is that it
can contain “virtual” fields. These fields can be calculated data based on data internal to
the table, calculated data independent of the data in the table, or based entirely on data
from another table. In a UniVerse® environment, there is a special entry in the dictionary
for each table that determines what entries, and therefore what data, is accessible using
ODBC. This dictionary item is named “@select.” Figure 1 displays the architecture of
this environment.

Universe

AIX

Table 1 Table 2 Table 3
Programming

Tools

Field 1
Field 2
Field 3

.

.

.
Field n

Dict 1
Dict 2
Dict 3

.

.
Dict n

@select

ODBC Service

Windows OS

ODBC Client

Unity

@select entry
contains the names
of the dictionaries
available to the
ODBC Service

Figure 1: The UniVerse to Unity connection.

Table 1
detail

Network
Transport

UniBASIC® has built in functionality for processing information stored in these
databases and dictionaries and for developing user interfaces. There are also several
procedural languages for automating data flow and user interfaces. UniVerse® also
provides a powerful query language for generating reports. This query language is called
RETRIEVE. These tools make the UniVerse® environment a powerful tool for building
enterprise software.

In particular this project will evaluate the performance of two approaches of
documenting data layouts in a business environment composed of over 500 data tables.
Each of these data tables has from 0 to over 200 data fields. The number of virtual data
fields is not limited in any significant way. In the first approach to documentation, the
capture process of Unity will be used to build X-Specs for the data tables. The second
approach will require new programs to be written in UniBASIC®. These programs will
increase the information available to build the X-Specs. They will retrieve the additional
data from the dictionary tables themselves.

Implementation

 The first approach will be to set up X-Specs using existing ODBC connectivity.
One drawback to using this approach includes the multi-valued nature of the data tables.
Under UniVerse®, a single field can hold multiple values. These multiple values can be
“related” to values in other fields. How this relationship is captured and exploited will
need to be determined. If information about these relationships is not available to an
ODBC client, Unity will not be able to present data about these fields correctly.

Another difficulty will be the selection of dictionary items to document. As stated
earlier, each field can have multiple dictionary items. For example, a field that contains a
company name can have a dictionary item that displays the field in its raw form. Another
dictionary item for the same field can display the field in all capital letters. Yet another
can display only the first 15 characters of the field. Each of these may be used within the
UniVerse® environment for different purposes, such as a number of different reports.
However, selecting from among them in order to make one or more of these fields
available for ODBC access will not be a simple task. Simply selecting all the dictionary
items may be acceptable where there are small numbers of virtual fields. However,
selecting a large number of virtual fields may lead to complexity in documentation and
querying and may introduce redundancy. There are other similar issues with selecting the
appropriate dictionary items for ODBC access.

In a UniVerse® database environment, tables have dictionary items for each field
that define the source of the data. These dictionary items are stored in a logical table that,
under UniVerse®, can be inspected programmatically. UniVerse® provides its own
programming language called UniBASIC®. The dictionary table that accompanies each
data table can be read and an X-Spec generated for each field defined. As in Unity, this
may not be a complete X-Spec and may require the user to complete the process.
However, this method will give additional information not available to an ODBC client.
This additional information can provide insight into relationships between fields,
relationships between tables, and formatting of fields.

This project will be a first attempt to deploy Unity in a UniVerse® environment.
The UniVerse® environment is one of a subset of database environments typically

referred to as “multi-value” databases. Many of these environments have data table
“dictionaries” that describe the data more completely than using ODBC. Further, since
joins are defined in dictionary items under UniVerse®, mapping the query-building
capability of Unity onto RETRIEVE will be a unique challenge.

Deliverables

This project will produce a report comparing the documentation of the sample
data in the test environment using Unity with using host based programs for
documentation. In addition, host programs and modifications to Unity will be produced
as required. The host based programs to assist in creating X-Specs will also be
completed. Additionally, Unity will be modified to create RETRIEVE query statements,
or a version of Unity with this feature will be created.

During the first phase of the project, which should be completed within the first
month of the project, sample tables will be selected from those available. These tables
will be tested for ODBC connectivity and the fields currently available will be mapped
using Unity. During this phase, the types of limitations inherent in accessing multi-
valued information via ODBC will be documented. This information will be required for
comparison with the host based retrieval method.

The second phase of the project will focus on minimizing the issues with ODBC
connectivity found by the testing in phase one. During this phase it may be necessary to
create a program on the host system to create “clean” or SQL compliant dictionary items
for fields that currently are not compliant. This will increase the number of fields
available to the ODBC client. This phase should be completed within the second month
of the project. At this time it may also be possible to create programs to add additional
fields to the @select record of each table. These programs would “inspect” dictionary
items not in the @select dictionary and decide whether or not they should be placed
there. This decision would be based, among other things, on whether the dictionary entry
is for a field that already has an entry in the @select dictionary and the suitability of the
dictionary item compared to others for the same field.

Work during the third phase of the project will repeat the mapping of the data
tables using the tools present in Unity. The information recorded during this phase will
also be used in the report for comparison against other results. This, being the second
time through a process, should give us an idea not only of the time required to document
using Unity, but, also, an improved estimate of time to implementation with an
experienced user.

The fourth phase is a more difficult one. During this phase we need to implement
a set of programs to increase the data available for the creation of X-Specs. Unity has
many tools that can be used in the generation of X-Specs including mapping fields to
semantic names. It may be impractical to port these to the host system in order to make
them useful. Instead it may be enough to fill in the skeleton of an X-Spec for a table/field
combination. Unity could then be modified to use the information contained in these
partial X-Specs to complete the process or add information before presenting these to the
user for completion. This phase will consume the majority of the time allotted for the
project.

The fifth phase of this project will involve modifying Unity to generate
RETRIEVE query statements that will execute on the host system rather than through an
ODBC client. This will be useful because the multi-valued nature of the host system is

best utilized on the host system itself.

Conclusion

In order to utilize information, it must be accessible. Accessibility includes both
documentation of available data and tools for accessing the data. Unity provides a tool
that can assist with the documentation of ODBC accessible data and with the retrieval of
the information. However, with a poorly documented multi-valued database system with
a lack of information available via ODBC, these tools may not be enough. This project
will provide some extensions to Unity that will allow it to work with a multi-valued
database system. Additionally, this project will research additional steps and programs to
help increase the availability of information via ODBC.

References

[1] R. Lawrence and K. Barker: Unity - A Database Integration Tool. TRLabs Emerging
Technology Bulletin December 4, 2000

[2] IBM: IBM Software: Database and Data Management: U2 product family: UniVerse:
Overview. http://www-3.ibm.com/software/data/u2/universe/

[3] R. Lawrence and K. Barker: Integrating Relational Database Schemas using a
Standardized Dictionary. SAC'2001 - 16th ACM Symposium on Applied Computing
March 11-14, 2001 Las Vegas, USA, pages 225-230.

