

Irving K. Barber School
of Arts and Sciences
UBC Okanagan

Date: Feb 3rd, 2016 Time: 11:30am Duration 35 minutes.
This exam has 5 questions for a total of 20 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Problem	Points Earned	Points Out Of
1		6
2		6
3		5
4		3
TOTAL:		$\mathbf{2 0}$

CANDIDATE NAME (print): \qquad

STUDENT NUMBER: \qquad
Signature: \qquad

6 1. Consider the ODE

$$
\frac{d y}{d t}=t y .
$$

(a) Use the method of isoclines to determine the direction field for the ODE. Your plot should include several isoclines with direction field arrows, and a few representative solution curves.
(b) Could you represent the behaviour of this ODE using a phase line? Why or why not?

6 2. Solve the initial value problem

$$
\frac{d y}{d x}+\frac{3 y}{x}+2=3 x, \quad y(1)=1
$$

5 3. Assume we are considering the direction field of an autonomous first order differential equation. Suppose we can qualitatively establish, by examining this direction field, that all solution curves $y(t)$ in a given region of the $t y$-plane exhibit one of the following two types of behaviour:
(i) increasing, concave up
(ii) increasing, concave down

Suppose we implement a Forward Euler approximation to one of the solution curves in the region, using some reasonable step size h. Consider each of the two cases. In each case, will the values y_{h} underestimate the exact values or oversetimate the exact values, or is it impossible to reach a definite conclusion? Explain your answer, and include sketches.

3 4. Suppose that a good model for the population of invasive Eastern black and gray squirrels in Kelowna is given by

$$
\frac{d N}{d t}=r N(K-N)
$$

where N is the squirrel population at time t, and r and K are constant parameters.
(a) Sketch the phase line for the ODE.
(b) If the initial population of squirrels is $N(0)=N_{0}$, then the solution of the IVP is

$$
N(t)=\frac{N_{0} K}{N_{0}+\left(K-N_{0}\right) e^{-r K t}}
$$

Now suppose that at time $t=T$, the city decides that the invasive squirrels are becoming a problem, and starts harvesting the squirrels at constant rate H. What is the new IVP for $N(t)$ that applies for $t \geq T$?
5. BONUS problem for the Group Test Find the most general function $N(u, v)$ so that the equation below is exact:

$$
\left(v e^{u v}-4 u^{3} v+2\right) d u+N(u, v) d v=0
$$

