

Irving K. Barber School
of Arts and Sciences
UBC Okanagan

Date: Feb 1st, 2015 Time: 11:30am Duration 35 minutes.
This exam has 6 questions for a total of 28 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Problem	Points Earned	Points Out Of
1		7
2		7
3		5
4		5
5		4
TOTAL:		$\mathbf{2 8}$

CANDIDATE NAME (print): \qquad

STUDENT NUMBER: \qquad

Signature: \qquad

7 1. An auditorium is 100 m in length, 50 m in width, and 30 m in height. It is ventilated by a system that feeds in fresh air and draws out air at the same rate. If the auditorium air is well-mixed, what inflow (and outflow) rate is required to reduce any air pollutants present by a factor of 100 in 30 minutes? Include a diagram in your solution.
2. Use the given direction field to answer the questions below.

2 (a) Draw several solution curves, some starting at $y=3$, some starting at y just above zero, and some starting at y just below zero.
3 (b) What type of ODE produced this direction field? Write a plausible guess for what this ODE is;
(c) What can you say about the solution trajectories as $t \rightarrow-\infty$?

5 3. Find the solution to the initial value problem

$$
y^{\prime}+2 t y=2 t e^{-t^{2}}, \quad y(1)=2
$$

5 4. Find an integrating factor for the equation

$$
\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0 .
$$

Make sure you verify that your new equation is indeed exact! (Hint: The integrating factor is a function of x.)

4 5. Use the Forward Euler method to approximate the solution to the IVP below using steps of size $h=0.1$. Enter your results in the table provided. Show your calculations below.

$$
\frac{d v}{d t}=\frac{t}{v}, \quad v(0)=-1
$$

n	t_{n}	v_{n}	v_{n+1}
0	0		
1			

6. BONUS PROBLEM for the Group Test (you can start working on this problem while waiting for the group test to start): Solve (implicitly) the exact differential equation

$$
\left(\sin (x)+x^{2} e^{y}-1\right) d y+\left(y \cos (x)+2 x e^{y}\right) d x=0 .
$$

