

Irving K. Barber School
of Arts and Sciences
UBC Okanagan

Date: Mar 16th, 2016 Time: 12:05pm Duration 20 minutes.
This exam has 5 questions for a total of 22 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Problem	Points Earned	Points Out Of
1		3
2		3
3		7
4		9
BONUS		2
TOTAL:		$\mathbf{2 2}$

CANDIDATE NAMES (print): \qquad

CANDIDATE NAMES: \qquad

CANDIDATE NAMES: \qquad

3 1. Determine the form of a particular solution to the ODE below. Do not solve for the coefficients!

$$
y^{\prime \prime}+4 y^{\prime}+5 y=e^{2 t}+t^{2} \sin (t)-e^{2 t} \cos (t)
$$

2. a mass weighing 8 kg is attached to a spring with stiffness constant $10 \mathrm{~N} / \mathrm{m}$. At $t=0$, the mass is at it's equilibrium position, and an external force $F(t)=2 \cos (2 t) \mathrm{N}$ is applied to the system. The damping constant for the system is $1 \mathrm{Ns} / \mathrm{m}$.
(a) Write the IVP that governs the system.

1
(b) What is the resonance frequency of the system? (give the exact answer)

7 3. Consider the ODE $y^{\prime \prime}+y=\tan (t)$. Given that $y_{h}(t)=c_{1} \cos (t)+c_{2} \sin (t)$, find a particular solution.
(Hint: You may find it useful to know that $\int \sec (u) d u=\ln |\sec (u) \tan (u)|+C$.)

9 4. Consider the following forced spring-mass system:

$$
4 y^{\prime \prime}+4 y^{\prime}+5 y=17 \cos (t), \quad y(0)=y^{\prime}(0)=0
$$

Given that

$$
y_{h}(t)=e^{-\frac{1}{2} t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right),
$$

find the equation of motion of the mass.

Workspace for question 4.
5. BONUS problem for the Group Test - 2 points Use the mass-spring analogy to determine the qualitative form of solutions to the IVP

$$
U^{\prime \prime}+c U^{\prime}+U(1-U)=0, \quad U(0)=0.9, \quad U^{\prime}(0)=0
$$

where c is an arbitary positive constant. (Note: This equation is known as the FisherKolmogorov equation.)

