INSTRUCTOR: REBECCA TYSON

## COURSE: MATH 225



IRVING K. BARBER SCHOOL OF ARTS AND SCIENCES UBC OKANAGAN

Date: Mar 16th, 2016 Time: 12:05pm Duration 20 minutes. This exam has 5 questions for a total of 22 points.

## SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

|         | Points | Points |
|---------|--------|--------|
| Problem | Earned | Out Of |
| 1       |        | 3      |
| 2       |        | 3      |
| 3       |        | 7      |
| 4       |        | 9      |
| BONUS   |        | 2      |
| TOTAL:  |        | 22     |

CANDIDATE NAMES (print): \_\_\_\_\_

## CANDIDATE NAMES: \_\_\_\_\_

CANDIDATE NAMES: \_\_\_\_\_

3 1. Determine the **form** of a particular solution to the ODE below. Do **not** solve for the coefficients!

 $y'' + 4y' + 5y = e^{2t} + t^2 \sin(t) - e^{2t} \cos(t)$ 

- 2. a mass weighing 8 kg is attached to a spring with stiffness constant 10 N/m. At t = 0, the mass is at it's equilibrium position, and an external force  $F(t) = 2\cos(2t)$  N is applied to the system. The damping constant for the system is 1 Ns/m.
- (a) Write the IVP that governs the system.

2

1

(b) What is the resonance frequency of the system? (give the **exact** answer)

7 3. Consider the ODE  $y'' + y = \tan(t)$ . Given that  $y_h(t) = c_1 \cos(t) + c_2 \sin(t)$ , find a particular solution.

(*Hint: You may find it useful to know that*  $\int \sec(u) du = \ln |\sec(u) \tan(u)| + C$ .)

9 4. Consider the following forced spring-mass system:

$$4y'' + 4y' + 5y = 17\cos(t), \qquad y(0) = y'(0) = 0.$$

Given that

$$y_h(t) = e^{-\frac{1}{2}t}(c_1\cos(t) + c_2\sin(t)),$$

find the equation of motion of the mass.

Workspace for question 4.

5. **BONUS problem for the Group Test - 2 points** Use the mass-spring analogy to determine the qualitative form of solutions to the IVP

$$U'' + cU' + U(1 - U) = 0,$$
  $U(0) = 0.9,$   $U'(0) = 0,$ 

where c is an arbitrary positive constant. (Note: This equation is known as the Fisher-Kolmogorov equation.)