UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences
ubC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Feb 8th, 2017 Time: 11:30am Duration: 35 minutes.
This exam has 5 questions for a total of 20 points.
SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

Question:	1	2	3	4	5	Total
Points:	4	4	4	6	2	20
Score:						

4 1. Consider the two ODEs

$$
\mathrm{A} \frac{d y}{d x}=1-x y, \quad \mathrm{~B} \frac{d y}{d x}=x+y .
$$

For each ODE, determine the corresponding direction field below, and justify your choice.

(a)

(c)

(b)

(d)

4 2. Show that $x^{4} y^{3}$ is an integrating factor for the ODE

$$
\left(3 y^{2}-6 x y\right) d x+\left(3 x y-4 x^{2}\right) d y=0
$$

4 3. Solve the initial value problem

$$
\frac{d y}{d x}=3 x^{2}\left(1+y^{2}\right), \quad y(0)=1
$$

6 4. Find the general solution to the ODE

$$
\frac{d r}{d \theta}=-r \tan (\theta)+\sec (\theta)
$$

2 5. Write the Backward Euler approximation for the ODE in question 4.

