UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 the University of british columbia

Irving K. Barber School
of Arts and Sciences
ubC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: April 16th, 2018 Time: 9:00am Duration: 3 hours
This exam has 11 questions for a total of 86 points.
SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a closed-book, individual exam.

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	9	5	10	6	4	4	10	12	4	8	14	86
Score:												

5 1. (a) Find the general solution of

$$
x \frac{d y}{d x}+2 y=x^{-3} .
$$

(b) Find the general solution of

$$
\frac{1}{2} \frac{d y}{d x}=\sqrt{y+1} \cos (x)
$$

Express the solution in explicit form.

5 2. Show that when Euler's method is used to approximate the solution of the initial value problem

$$
y^{\prime}=5 y, \quad y(0)=1
$$

at $x=1$, then the approximation with stepsize h is $(1+5 h)^{(1 / h)}$.
3. A brine solution flows at a constant rate of $8 \mathrm{~L} / \mathrm{min}$ into a large tank that initially held 100 L of water in which was dissolved 0.5 kg of salt. The solution inside the tank is kept well stirred and flows out of the tank at a rate of $8 \mathrm{~L} / \mathrm{min}$. The solution entering the tank contains dissolved salt at a concentration of $0.05 \mathrm{~kg} / \mathrm{L}$
7 (a) Let $X(t)$ represent the mass of salt in the tank at time t minutes. Find $X(t)$.

3 (b) When will the concentration of salt in the tank reach $0.02 \mathrm{~kg} / \mathrm{L}$?

6 4. Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+17 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

4 5. Find the general solution of

$$
z^{\prime \prime \prime}+2 z^{\prime \prime}-4 z^{\prime}-8 z=0
$$

(Hint: $\left.r^{3}+2 r^{2}-4 r-8=(r-2)\left(r^{2}+4 r+4\right).\right)$
6. For each of the differential equations below, determine the form of the particular solution (do not evaluate the coefficients!). The homogeneous solution is given.
(a) $y^{\prime \prime}+9 y=4 t^{3} \sin (3 t)\left(y_{h}(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)$
$2 \quad(\mathrm{~b}) y^{\prime \prime}-6 y^{\prime}+9 y=5 t^{6} e^{3 t}\left(y_{h}(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}\right)$

10 7. Find the particular solution to the differential equation

$$
y^{\prime \prime}+y=\sec (t)
$$

8. An 8 kg mass is attached to a spring with spring constant $40 \mathrm{~N} / \mathrm{m}$, and the system is at rest. At time $t=0$, an external force $F(t)=\cos (2 t) \mathrm{N}$ is applied to the system. The damping constant for the system is $3 \mathrm{Ns} / \mathrm{m}$.
8 (a) Translate the word problem into an initial value problem.

4 (b) Is the system at resonance? Explain.

4 9. Find the Laplace transform of the function $h(t)=e^{-t} t \sin (2 t)$.
10. Theory
(a) Use Theorem 5 (see the Additional Information pages supplied with this exam) to discuss the existence and uniqueness of a solution to the initial value problem

$$
\left(1+t^{2}\right) y^{\prime \prime}+t y^{\prime}-y=\tan (t), \quad y\left(t_{0}\right)=Y_{0}, \quad y^{\prime}\left(t_{o}\right)=Y_{1}
$$

where t_{0}, Y_{0} and Y_{1} are real constants.
(b) Prove property P4 (see the Additional Information provided with this exam).

14 11. Use the method of Laplace Transforms to solve the initial value problem

$$
y^{\prime \prime}+4 y=g(t), \quad y(0)=-1, \quad y^{\prime}(0)=0
$$

where

$$
g(t)= \begin{cases}t, & 0<t<2 \\ 5, & t>2\end{cases}
$$

Extra space to work on problem 11.

Additional Information

Theorem 5 Suppose $p(t), q(t)$, and $g(t)$ are continuous on an interavl (a, b) that contains the point t_{0}. Then, for any choice of the initial values Y_{0} and Y_{1}, there exists a unique solution $y(t)$ on the same interval (a, b) to the initial value problem

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t), \quad y\left(t_{0}\right)=Y_{0}, \quad y^{\prime}\left(t_{0}\right)=Y_{1} .
$$

BRIEF TABLE OF LAPLACE TRANSFORMS

$$
\begin{array}{ll}
\frac{f(t)}{1} & \frac{F(s)=\mathcal{L}\{f\}(s)}{\frac{1}{s}, \quad s>0} \\
e^{a t} & \frac{1}{s-a}, \quad s>a \\
t^{n}, \quad n=1,2, \ldots & \frac{n!}{s^{n+1}}, \quad s>0 \\
\sin (b t) & \frac{b}{s^{2}+b^{2}}, \quad s>0 \\
\cos (b t) & \frac{s}{s^{2}+b^{2}}, \quad s>0 \\
e^{a t} t^{n}, \quad n=1,2, \ldots & \frac{n!}{(s-a)^{n+1}}, \quad s>a \\
e^{a t} \sin (b t) & \frac{b}{(s-a)^{2}+b^{2}}, \quad s>a \\
e^{a t} \cos (b t) & \frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a \\
u(t-a) & \frac{e^{-a s}}{s}, \quad s>a
\end{array}
$$

BRIEF TABLE OF PROPERTIES OF THE LAPLACE TRANSFORM

$$
\begin{array}{ll}
\mathrm{P} 3: & \mathcal{L}\left\{e^{a t} f(t)\right\}(s)=\mathcal{L}\{f\}(s-a) \\
\mathrm{P} 4: & \mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0) \\
\mathrm{P} 6: & \mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0) \\
\mathrm{P} 7: & \mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}}(\mathcal{L}\{f\}(s))
\end{array}
$$

THEOREM: TRANSLATION IN t

Let $F(s)=\mathcal{L}\{f\}(s)$ exist for $s>a \geq 0$. If a is a positive constant, then

$$
\mathcal{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} F(s)
$$

and, conversely, an inverse Laplace transform of $e^{-a t} F(s)$ is given by

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}(t)=f(t-a) u(t-a)
$$

where $u(t)$ is the unit step function.
TRANSFORM OF A PERIODIC FUNCTION
If f has period T and is piecewise continuous on $[0, T]$, thten the Laplace transforms

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \text { and } F_{T}(s)=\int_{0}^{T} e^{-s t} f(t) d t
$$

are related by

$$
F(s)=\frac{F_{T}(s)}{1-e^{-s T}}
$$

CONVOLUTION THEOREM

Let $f(t)$ and $g(t)$ be piecewise continuous on $[0, \infty)$ and of exponential order α and set $F(s)=\mathcal{L}\{f\}(s)$ and $G(s)=\mathcal{L}\{g\}(s)$. Then

$$
\mathcal{L}\{f * g\}(s)=F(s) G(s)
$$

or, equivalently,

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=(f * g)(t)
$$

WINDOW FUNCTION

The window function $\Pi_{a, b}$ can be defined in terms of step functions:

$$
\Pi_{a, b}(t)=u(t-a)-u(t-b)
$$

A POSSIBLY USEFUL INTEGRAL

$$
\int u \sin (a u) d u=-\frac{u}{a} \cos (a u)+\frac{1}{a^{2}} \sin (a u)+C
$$

