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1. (a)5 Find the general solution of

x
dy

dx
+ 2y = x−3.

(b)4 Find the general solution of

1

2

dy

dx
=
√
y + 1 cos(x).

Express the solution in explicit form.
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2.5 Show that when Euler’s method is used to approximate the solution of the initial value
problem

y′ = 5y, y(0) = 1,

at x = 1, then the approximation with stepsize h is (1 + 5h)(1/h).
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3. A brine solution flows at a constant rate of 8 L/min into a large tank that initially held
100 L of water in which was dissolved 0.5 kg of salt. The solution inside the tank is kept
well stirred and flows out of the tank at a rate of 8 L/min. The solution entering the
tank contains dissolved salt at a concentration of 0.05 kg/L

(a)7 Let X(t) represent the mass of salt in the tank at time t minutes. Find X(t).
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(b)3 When will the concentration of salt in the tank reach 0.02 kg/L?
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4.6 Solve the initial value problem

y′′ + 2y′ + 17y = 0, y(0) = 1, y′(0) = −1
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5.4 Find the general solution of

z′′′ + 2z′′ − 4z′ − 8z = 0

(Hint: r3 + 2r2 − 4r − 8 = (r − 2)(r2 + 4r + 4).)

6. For each of the differential equations below, determine the form of the particular solution
(do not evaluate the coefficients!). The homogeneous solution is given.

(a)2 y′′ + 9y = 4t3 sin(3t) (yh(t) = c1 cos(3t) + c2 sin(3t))

(b)2 y′′ − 6y′ + 9y = 5t6e3t (yh(t) = c1e
3t + c2te

3t)
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7.10 Find the particular solution to the differential equation

y′′ + y = sec(t).
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8. An 8 kg mass is attached to a spring with spring constant 40 N/m, and the system is
at rest. At time t = 0, an external force F (t) = cos(2t) N is applied to the system. The
damping constant for the system is 3 Ns/m.

(a)8 Translate the word problem into an initial value problem.

(b)4 Is the system at resonance? Explain.
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9.4 Find the Laplace transform of the function h(t) = e−tt sin(2t).
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10. Theory

(a)3 Use Theorem 5 (see the Additional Information pages supplied with this exam) to
discuss the existence and uniqueness of a solution to the initial value problem

(1 + t2)y′′ + ty′ − y = tan(t), y(t0) = Y0, y′(to) = Y1,

where t0, Y0 and Y1 are real constants.

(b)5 Prove property P4 (see the Additional Information provided with this exam).
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11.14 Use the method of Laplace Transforms to solve the initial value problem

y′′ + 4y = g(t), y(0) = −1, y′(0) = 0,

where

g(t) =

{
t, 0 < t < 2,

5, t > 2.
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Extra space to work on problem 11.
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Additional Information

Theorem 5 Suppose p(t), q(t), and g(t) are continuous on an interavl (a, b) that contains
the point t0. Then, for any choice of the initial values Y0 and Y1, there exists a unique solution
y(t) on the same interval (a, b) to the initial value problem

y′′(t) + p(t)y′(t) + q(t)y(t) = g(t), y(t0) = Y0, y′(t0) = Y1.

BRIEF TABLE OF LAPLACE TRANSFORMS

f(t) F (s) = L{f}(s)

1
1

s
, s > 0

eat
1

s− a
, s > a

tn, n = 1, 2, ...
n!

sn+1
, s > 0

sin(bt)
b

s2 + b2
, s > 0

cos(bt)
s

s2 + b2
, s > 0

eattn, n = 1, 2, ...
n!

(s− a)n+1
, s > a

eat sin(bt)
b

(s− a)2 + b2
, s > a

eat cos(bt)
s− a

(s− a)2 + b2
, s > a

u(t− a)
e−as

s
, s > a

BRIEF TABLE OF PROPERTIES OF THE LAPLACE TRANSFORM

P3: L
{
eatf(t)

}
(s) = L{f} (s− a)

P4: L{f ′} (s) = sL{f}(s)− f(0)

P6: L
{
f (n)

}
(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− ...− f (n−1)(0)

P7: L{tnf(t)}(s) = (−1)n
dn

dsn
(L{f}(s))
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THEOREM: TRANSLATION IN t

Let F (s) = L{f}(s) exist for s > a ≥ 0. If a is a positive constant, then

L{f(t− a)u(t− a)}(s) = e−asF (s),

and, conversely, an inverse Laplace transform of e−atF (s) is given by

L−1
{
e−asF (s)

}
(t) = f(t− a)u(t− a),

where u(t) is the unit step function.

TRANSFORM OF A PERIODIC FUNCTION

If f has period T and is piecewise continuous on [0, T ], thten the Laplace transforms

F (s) =

∫ ∞
0

e−stf(t)dt and FT (s) =

∫ T

0

e−stf(t)dt

are related by

F (s) =
FT (s)

1− e−sT
.

CONVOLUTION THEOREM

Let f(t) and g(t) be piecewise continuous on [0,∞) and of exponential order α and set
F (s) = L{f}(s) and G(s) = L{g}(s). Then

L{f ∗ g}(s) = F (s)G(s),

or, equivalently,
L−1{F (s)G(s)} = (f ∗ g)(t).

WINDOW FUNCTION

The window function Πa,b can be defined in terms of step functions:

Πa,b(t) = u(t− a)− u(t− b).

A POSSIBLY USEFUL INTEGRAL∫
u sin(au)du = − u

a
cos(au) +

1

a2
sin(au) + C

Page 15 of 15


