UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences
ubC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Jan 31st, 2018 Time: 11:30am Duration: 35 minutes.
This exam has 5 questions for a total of 24 points.
SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

Question:	1	2	3	4	5	Total
Points:	3	4	7	3	7	24
Score:						

3 1. Sketch the phase line for the ODE $y^{\prime}=(y+1)(y-2)(y-3)$ and state the nature of its steady states.

4 2. Find all solutions to the separable ODE

$$
\frac{1}{\theta} \frac{d y}{d \theta}=\frac{y \sin (\theta)}{y^{2}+1}, \quad y(\pi)=1 .
$$

(Possibly useful integral: $\int \theta \sin (\theta) d \theta=\sin (\theta)-\theta \cos (\theta)+C$)
3. Suppose a brine containing salt at a concentration of $0.2 \mathrm{~kg} / \mathrm{L}$ runs into a tank initially filled with 500 L of water containing 5 kg of salt. The brine enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$, and the well-stirred mixture flows out at the same rate. Let $X(t)$ be the amount of salt in the tank at time t.
(a) Make a sketch showing the tank, inflow, and outflow information. Write down the ODE and initial conditions for $X(t)$. Simplify the ODE.
(b) sketch the phase line for the ODE. What is $\lim _{t \rightarrow \infty} X(t)$?

3 4. Find the value of k so that the differential equation below is exact.

$$
\left(y^{3}+k x y^{4}-2 x\right) d x+\left(3 x y^{2}+20 x^{2} y^{3}\right) d y=0
$$

7 5. Solve the initial value problem $\quad x \frac{d y}{d x}+3 y+2 x=3 x^{2}, y(1)=1$.

