UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences
ubC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Jan 29th, 2018 Duration: 35 minutes.
This exam has 4 questions for a total of 20 points.
SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

Question:	1	2	3	4	Total
Points:	6	6	3	5	20
Score:					

6 1. Consider the ODE $y^{\prime}=(y-1)(y-a)$. Sketch the phase line and state the nature of its steady states. Note that your answer depends on the value of a. You should consider all possibilities.

6 2. Obtain the general solution to the equation

$$
\frac{d y}{d x}=\frac{y}{x}+2 x+1
$$

3 3. Show that the ODE below is exact.

$$
\left(\frac{1}{r}+2 s^{2} r\right) d r+\left(2 s r^{2}-\cos (s)\right) d s=0
$$

4. Suppose a brine containing 0.3 kilograms (kg) of salt per litre (L) runs into a tank initially filled with 400 L of water containing 2 kg of salt. The bring enters at $10 \mathrm{~L} / \mathrm{min}$, the mixture is kept uniform by stirring, and the mixture flows out at the same rate.
(a) Let $X(t)$ be the amount of salt in the tank at time t. Write down the ODE and initial conditions for $X(t)$.
(b) What is the mass of salt in the tank after 10 min?
