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1.8 Consider the equation
dv

dt
= −a− kv

where a and k are positive constant parameters.

(a) Find all solutions to the equation above.
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(b) Find limt→∞ v(t)

(c) Verify the answer with the use of a phase line diagram.
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2.9 (a) Find the general solution to

d2y

dt
+ 2

dy

dt
+ 9y = 0 (1)

(b) Find the solution to Eq. (1) that satisfies the initial conditions y(0) = 1, y′(0) = 0.
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(c) Sketch the solution you have obtained in part (b) as a function of time. Your sketch
should include the initial conditions and possibly information about the location of
maxima and/or minima.
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3.12 (a) Find the general solution to

t2y′′ − 4ty′ + 6y = 0 , t > 0

(b) Use the results obtained in part (a) to find the general solution to

t2y′′ − 4ty′ + 6y = t3 + 1 , t > 0

Note: This is a NON-constant coefficient equation.
Hint: Remember to write the equation in standard form.
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Extra space for question 4
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4.5 Solve the following IVP by using the method of Laplace transform

y′′′ − y′′ + y′ − y = 0, y(0) = 1 , y′(0) = 1 , y′′(0) = 1

Hint: a3 − a2 + a− 1 = (a− 1)(a2 + 1)
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5.5 (a) Write the following IVP

y′ +
3y

x
+ 2 = 3x , y(1) = 0

by using the Forward Euler formula with stepsize h

(b) Express y1 in terms of h. Simplify your answer and show all your work.
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6.4 Verify that when the linear differential equation [P (x)y−Q(x)]dx+ dy = 0 is multiplied
by µ(x) = e

∫
P (x)dx, the result is exact.
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7.4 Use the convolution theorem to find the inverse Laplace transform of

F (s) =
3s

(s2 + 1)(s+ 4)

(Do not solve the integral).
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8.8 (a) Find the general solution to the differential equation y′′ + 4y = 0. Express the
general solution in the form y(t) = c1y1(t) + c2y2(t).

(b) Use the Wronskian to show that y1(t) and y2(t) form a fundamental solutions set.
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(c) Show that there is no solution that satisfies the conditions y(0) = 2 and y(π/2) = 0.

(d) Explain briefly why your results in part (c) do not contradict the existence and
uniqueness theorem (corresponding to Theorem 5, stated at the back of the exam).
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9.8 The mixing tank in Figure 1 initially holds 500 L of water (there is initially no salt in
the tank). For the first 30 min of operation, valve A is open, adding 5 L/min brine
containing a 0.4 Kg/L salt concentration. After 30 min, valve A is closed and valve B is
switched in, adding a 0.6 Kg/L concentration at 5 L/min. The exit valve C removes 5
L/min, thereby keeping the volume constant.

Figure 1: Mixing tank
.

(a) Write down the IVP characterising the system (do NOT solve the problem).
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(b) Use the method of the Laplace transform to rewrite the IVP found in (a) into the
s-space. Solve for X(s).
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10.12 (a) Solve the following IVP:

d2y

dt2
+ y = 5 cos(t), y(0) = 0, y′(0) = 1 (2)
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Extra space for question 10 (a)

(b) Sketch the solution

(c) Explain briefly what is a possible physical interpretation of the solution you found
in part (a). Refer to the forced mass-spring oscillator in your answer.
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Empty page
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Additional Information

Theorem 5 Suppose p(t), q(t), and g(t) are continuous on an interval (a, b) that contains
the point t0. Then, for any choice of the initial values Y0 and Y1, there exists a unique solution
y(t) on the same interval (a, b) to the initial value problem

y′′(t) + p(t)y′(t) + q(t)y(t) = g(t), y(t0) = Y0, y′(t0) = Y1.

BRIEF TABLE OF LAPLACE TRANSFORMS

f(t) F (s) = L{f}(s)

1
1

s
, s > 0

eat
1

s− a
, s > a

tn, n = 1, 2, ...
n!

sn+1
, s > 0

sin(bt)
b

s2 + b2
, s > 0

cos(bt)
s

s2 + b2
, s > 0

eattn, n = 1, 2, ...
n!

(s− a)n+1
, s > a

eat sin(bt)
b

(s− a)2 + b2
, s > a

eat cos(bt)
s− a

(s− a)2 + b2
, s > a

u(t− a)
e−as

s
, s > a

BRIEF TABLE OF PROPERTIES OF THE LAPLACE TRANSFORM

P3: L
{
eatf(t)

}
(s) = L{f} (s− a)

P4: L{f ′} (s) = sL{f}(s)− f(0)

P6: L
{
f (n)

}
(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− ...− f (n−1)(0)

P7: L{tnf(t)}(s) = (−1)n
dn

dsn
(L{f}(s))
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THEOREM: TRANSLATION IN t

Let F (s) = L{f}(s) exist for s > a ≥ 0. If a is a positive constant, then

L{f(t− a)u(t− a)}(s) = e−asF (s),

and, conversely, an inverse Laplace transform of e−atF (s) is given by

L−1
{
e−asF (s)

}
(t) = f(t− a)u(t− a),

where u(t) is the unit step function.

TRANSFORM OF A PERIODIC FUNCTION

If f has period T and is piecewise continuous on [0, T ], thten the Laplace transforms

F (s) =

∫ ∞
0

e−stf(t)dt and FT (s) =

∫ T

0

e−stf(t)dt

are related by

F (s) =
FT (s)

1− e−sT
.

CONVOLUTION THEOREM

Let f(t) and g(t) be piecewise continuous on [0,∞) and of exponential order α and set
F (s) = L{f}(s) and G(s) = L{g}(s). Then

L{f ∗ g}(s) = F (s)G(s),

or, equivalently,
L−1{F (s)G(s)} = (f ∗ g)(t).

WINDOW FUNCTION

The window function Πa,b can be defined in terms of step functions:

Πa,b(t) = u(t− a)− u(t− b).
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