UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

THE UNIVERSITY OF BRITISH COLUMBIA
Irving K. Barber School
of Arts and Sciences
UBC Okanagan

Instructor: Maria Martignoni Mseya Course: MATH 225
Date: Mar 13th, 2019 Time: 11:30am Duration: 35 minutes.
This exam has 5 questions for a total of 25 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 15 minutes.

Question:	1	2	3	4	5	Total
Points:	4	6	5	6	4	25
Score:						

4 1. The motion of a swinging door is governed by

$$
I \theta^{\prime \prime}+b \theta^{\prime}+k \theta=0, \quad \theta(0)=\theta_{0}, \quad \theta^{\prime}(0)=v_{0}
$$

where θ is the angle that the door is open. I, b and k are positive constants indicating respectively the moment of inertia, damping constant and spring constant associated with the swinging door. θ_{0} is the initial angle that the door is opened, and v_{0} is the initial angular velocity imparted to the door
(a) Determine for which values of b the door will not continually swing back and forth when closing.
(b) Assume $I=1, b=0$, and $k=1$. Write the down the form of the particular solution (do not solve for the coefficients) if the system described is subject to a forcing of:

- $F_{0} \cos (t)$
- $F_{0} t \sin (t)$

6 2. Find a differential equation corresponding to the following general solutions
(a) $y(t)=c_{1} e^{4 t}+c_{2} e^{-4 t}$.
(b) $y(t)=c_{1} t^{4}+c_{2} t^{-4}$
(c) $y(t)=c_{1} e^{4 t}+c_{2} e^{-4 t}+t e^{4 t}$

5 3. (a) Show that if $y_{1}(t)$ and $y_{2}(t)$ are linearly dependent on the interval I then their Wroskian is identically zero on I.
(b) Given that $y(x)=c_{1}+c_{2} x^{2}$ is a two-parameter family of solutions of $x y^{\prime \prime}-y^{\prime}=0$ on the interval $(-\infty, \infty)$, show that constants c_{1} and c_{2} cannot be found so that a member of the family satisfies the initial conditions $y(0)=0, y^{\prime}(0)=1$. Explain why this does not violate the existence and uniqueness theorem (the theorem is provided in the last page of the exam).

6 4. Find the general solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=t^{-3} e^{3 t}
$$

4 5. Consider the IVP

$$
\frac{d y}{d x}=y-x, \quad y(0)=1
$$

(a) Write the forward Euler formula for the equation above.
(b) Show that $y_{2}=1+2 h$.

Existence and Uniqueness Theorem: If $p(t), q(t)$, and $g(t)$ are continuous on an interval (a, b) that contains the point t_{0}, then for any choice of the initial values Y_{0} and Y_{1}, there exists a unique solution $y(t)$ on the same interval (a, b) to the initial value problem

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t), \quad y\left(t_{0}\right)=Y_{0}, \quad y^{\prime}\left(t_{0}\right)=Y_{1}
$$

