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1. Consider the ODE
dx

dt
= f(x) = ag(x) + b, (1)

where a and b are constants. The function g(x) is plotted in Figure 1.

Figure 1: Plot of the function g(x) defined in (1) on the interval x ∈ [0, 4].

(a)1 We can analyse solutions of (1) using a phase line. Why?

(b)3 Note that the horizontal axis can double as the phase line. On the horizontal axis
above, sketch the phase line for equation (1). Label each steady state with its
stability.
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(c)3 The two plots below show f1(x) = 2g(x) and f2(x) = g(x) + 3. The plot of g(x) is
shown in gray, for reference. Label each plot as appropriate, then sketch the phase
line for each case on the horizontal axis.

(d)2 Compare your new phase lines to the original phase line you drew on the previous
page. In either case, has a bifurcation occurred? Explain.
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2.3 Solve the ODE
dy

dt
= 2y2 cos(t)

3.3 Write the Taylor Series expansion of the function f(x) = ex
2

around x = 0 up to and
including third order.

4.4 Consider the IVP v′ = −3 − 2v2, v(0) = 2. Write the Forward Euler approximation of
the ODE, then use this formula to compute v(0.2). Insert your results into the table
below (except in the gray cell). Note that you can deduce the value of h from the table.

n tn vn v′(tn)

0 0 2

1 0.1

2 0.2
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5.7 Consider the IVP

(et+y + 2y)y′ + (et+y + 3t2) = 0, y(0) = 0.

Show that the ODE is exact, and solve the IVP. If possible, write an explicit solution.
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6.12 Solve the IVP below using the Method of Undetermined Coefficients. Express your final
solution as two phase-shifted sines, and sketch the steady-state solution on the axes
provided on the next page.

y′′ + 4y′ + 5y = cos(t), y(0) =
9

8
, y′(0) =

−23

8
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Extra workspace for problem #6.

Figure 2: Axes for question #6.

Page 7 of 14



Math 225 (Apr 27th, 2022) Final Exam

7. Consider the Global CO2 model we studied in class, and shown below.

(a)2 Referring to the compartmental diagram above, write down the ODE for the carbon
in the upper atmosphere, yua(t).

(b)4 Suppose that the carbon in the lower atmosphere is increasing linearly with time
at constant rate Q. Then we can write the upper atmospher ODE simply as y′ =
Qt− γy. Solve this ODE.
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8.7 Consider the homogeneous ODE ay′′+ by′+ cy = 0, where a, b, and c are real constants.
Suppose that ODE has fundamental solution set {y1(t), y2(t)}. Then, a particular solu-
tion of ay′′ + by′ + cy = f(t) is given by yp(t) = v1(t)y1(t) + v2(t)y2(t), where

v′1y1 + v′2y2 = 0, (2a)

v′1y
′
1 + v′2y

′
2 = f

a
. (2b)

Derive equations (2).

Hint: Start by plugging yp(t) into the non-homogeneous ODE.
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9. Consider the initial value problem

y′′ − y = g(t), y(0) = 1, y′(0) = 2, where g(t) =

{
1, t < 3,

t, t > 3.
(3)

(a)8 Using the method of Laplace transforms, show that

Y (s) =
s+ 1

s(s− 1)︸ ︷︷ ︸
P1

− 1

s2(s+ 1)︸ ︷︷ ︸
P2

e−3s,

where the two fractions have been labeled P1 and P2.
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(b)4 Find the partial fraction decompositions of P1 and P2.

(c)4 Find y(t).
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10. Consider the ODE
d2y

dt2
+ 9y = 2 cos(3t). (4)

(a)6 What is the form of the particular solution of (4)? Sketch the general solution, and
name the behaviour.

(b)3 We see an approximation of this behaviour in real systems. Why do we only see an
approximation? What can happen in real systems as the behaviour becomes more
intense? Explain.

(c)1 Name one application where this behaviour is useful.
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11. BONUS question:

(a)2 What does it mean to represent a function by its Taylor Series? Is the representation
exact?

(b)1 We used Taylor series multiple times in the course to derive solution methods. Name
two of these methods.
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Some Potentially Useful Information

BRIEF TABLE OF LAPLACE TRANSFORMS

f(t) F (s) = L{f}(s)

1
1

s
, s > 0

eat
1

s− a
, s > a

tn, n = 1, 2, ...
n!

sn+1
, s > 0

sin(bt)
b

s2 + b2
, s > 0

cos(bt)
s

s2 + b2
, s > 0

eattn, n = 1, 2, ...
n!

(s− a)n+1
, s > a

eat sin(bt)
b

(s− a)2 + b2
, s > a

eat cos(bt)
s− a

(s− a)2 + b2
, s > a

δ(t− a) e−as, s > 0

H(t− a)
e−as

s
, s > a

BRIEF TABLE OF PROPERTIES OF THE LAPLACE TRANSFORM

L
{
eatf(t)

}
(s) = L{f} (s− a)

L{f ′′} (s) = s2L{f}(s)− sf(0)− f ′(0)

L
{
f (n)

}
(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− ...− f (n−1)(0)

L{tnf(t)}(s) = (−1)n
dn

dsn
(L{f}(s))

THEOREM: TRANSLATION IN t

Let F (s) = L{f}(s) exist for s > a ≥ 0. If a is a positive constant, then

L{f(t− a)H(t− a)}(s) = e−asF (s),

and, conversely, an inverse Laplace transform of e−atF (s) is given by

L−1
{
e−asF (s)

}
(t) = f(t− a)H(t− a),

where H(t) is the Heaviside function.
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