UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences
ubC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Feb 9th, 2022 Time: 4:00pm Duration: 35 minutes.
This exam has 4 questions for a total of 28 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Answers without accompanying work are worth zero. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

1. Consider the ODE

$$
\begin{equation*}
\frac{d y}{d t}=f(y)=y \cos (y)+a \tag{1}
\end{equation*}
$$

where a is a constant. The function $f(y)$ for the case $a=0$ is plotted in Figure 1.

Figure 1: Plot of the function $f(y)$ defined in (1).
1 (a) The ODE (1) is autonomous. Why?

3 (b) In the space below, sketch the phase line between $\pm 2 \pi$ for the case $a=0$, and indicate the stability of each steady state.

3 (c) How would the stability of the steady states change if $a=2$ or $a=-2$? Explain.

7 2. Solve the ODE

$$
(\sin (x)+\ln (y)) d x+\left(\frac{x}{y}+e^{y}\right) d y=0
$$

3. Consider the initial value problem

$$
\frac{d y}{d t}=t e^{-2 t}-2 y, \quad y(0)=y_{0}
$$

5 (a) The ODE is linear. Solve it.

2 (b) How does the value of y_{0} affect $\lim _{t \rightarrow \infty} y(x)$? Explain.
4. Numerical methods.
(a) On the direction field below, starting at the point $(t, y)=(0.5,3)$ and using $h=1$, carefully plot one step of the Forward Euler method, including the relevant slope arrows. Add explanatory text if necessary.

(b) On the direction field below, starting at the point $(t, y)=(0.5,3)$ and using $h=1$, carefully plot one step of the Heun method, including the relevant slope arrows. Add explanatory text if necessary.

1 (c) Why is the Heun method more accurate?

Question:	1	2	3	4	Total
Points:	7	7	7	7	28
Score:					

