UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences

UBC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Feb 7th, 2022 Time: 4:00pm Duration: 35 minutes.
This exam has 4 questions for a total of 25 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Answers without accompanying work are worth zero. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

1. The direction field for

$$
\begin{equation*}
\frac{d y}{d x}=2 x+y \tag{1}
\end{equation*}
$$

is shown in Figure 1. Use it to answer the questions below.

Figure 1: Figure for problem 1.
2 (a) Sketch the solution curve that passes through the point ($-2,3$). Label the curve $y_{1}(x)$.
(b) What can you say about $y_{1}(x)$ as $x \rightarrow \infty$?
(c) Sketch the solution curve that passes through the point $(0,-2)$ and label it $L(x)$.
(d) What can you say about the solution $y_{1}(x)$ as $x \rightarrow-\infty$? Be specific.

4 2. Solve the initial value problem

$$
e^{x} \frac{d y}{d x}=y^{2}, \quad y(0)=1
$$

using separation of variables. Show all your work.
3. Consider the ODE

$$
\begin{equation*}
\left(3 y^{2}-t^{2}\right) d y-2 t y d t=0 \tag{2}
\end{equation*}
$$

2 (a) Show that (2) is exact.

7 (b) Solve the ODE (2). You should obtain an implicit solution for $y(t)$.
4. . Consider the ODE

$$
\frac{d N}{d t}=N(1-N)
$$

2 (a) Write the Forward Euler (FE) and Backward Euler (BE) approximations (in the BE case, do not solve for N_{t+1}).

2 (b) The direction field for the ODE and the true solution when $N(0)=0.1$ is shown in Figure 2. Show two steps of the FE and BE methods on the direction field using $h=2$.

Figure 2: Figure for problem 4.
2 (c) Why does the FE method initially underestimate the true solution? Explain.

