UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences
ubC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Feb 6th, 2023 Time: 4:00pm Duration: 35 minutes.
This exam has 6 questions for a total of 24 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Answers without accompanying work are worth zero. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

1. The figure below is a plot of $f(x)$. Assume that outside the interval shown, the function never again crosses the horizontal axis. More specifically, the function is continuously increasing for $x<-3 \pi / 2$, peaks shortly to the right of $x=2 \pi$ and is continuously decreasing thereafter (for $x>2 \pi$).

(a) Use the horizontal axis (i.e., the line $f(x)=0$) as your phase axis, and sketch the phase line for the ODE $x^{\prime}=f(x)$. State the nature of the equilibria.
(b) Now imagine shifting the function $f(x)$ up or down by an arbitrary amount a.
i. What is the smallest shift size a at which the phase line has exactly two steady states? Specify if the shift is up or down.
ii. What are the two steady states and what is their stability? Hint: You might find it useful to draw a horizontal line through the plot above, in the appropriate place, and indicate the steady states on that new line.
4) 2. Solve the ODE

$$
\frac{d y}{d x}+x y^{2}=0
$$

Make sure you give all of the solutions!

5 3. Solve the ODE

$$
x \frac{d y}{d x}+3\left(y+x^{2}\right)=1
$$

2 4. Find the most general function $R(p, q)$ so that the equation below is exact.

$$
R(p, q) d q+\left(q \cos (p)+e^{q}\right) d p=0
$$

2 5. Set up the partial fraction decomposition (i.e. just set up the fractions - do not solve for the coefficients!) of

$$
\frac{1}{1-x^{4}}=\frac{1}{(1-x)(1+x)\left(1+x^{2}\right)} .
$$

6. Numerical solution of the ODE for $r(t)$ (not shown), using some unknown method, yields the results shown below.

stepsize	function value	difference
$h=0.1$	$r(2)=2.28835$	
$h=0.05$	$r(2)=2.26262$	
$h=0.025$	$r(2)=2.24945$	
$h=0.0125$	$r(2)=2.24279$	
$h=0.00625$	$r(2)=2.23943$	
$h=0.003125$	$r(2)=2.23775$	
$h=0.0015625$	$r(2)=2.23691$	

2 (a) Why does the value of $r(2)$ keep changing?
(b) Based on the information given, determine the value of $r(2)$ within two decimal places (± 0.01). Fill in the table as you do this, and explain how you arrived at your answer.

Question:	1	2	3	4	5	6	Total
Points:	7	4	5	2	2	4	24
Score:							

