UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences

UBC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Feb 12th, 2024 Time: 8:00am Duration: 35 minutes.
This exam has 5 questions for a total of 32 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Answers without accompanying work are worth zero. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

1. The growth of a certain population $N(t)$ is described by

$$
\begin{equation*}
\frac{d N}{d t}=r N\left(1-\frac{N}{3}\right)(N-1) \tag{1}
\end{equation*}
$$

where $r>0$ and $t \geq 0$.
5
(a) Sketch the phase line. Label the steady states with their stability.

2 (b) Suppose $N(0)>0$. What is $\lim _{t \rightarrow \infty} x(t)$?

6 2. Solve the IVP

$$
y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=3
$$

5 3. Consider the IVP

$$
t \frac{d y}{d t}-y=t^{2} \sin (t), \quad y(\pi)=0, \quad t \geq 0
$$

The ODE is linear in y. Use this information to solve the IVP.

6 4. Verify that the ODE below is exact, and solve it.

$$
\left(e^{x+y}+2 x\right) d x+\left(e^{x+y}-2 y\right) d y=0
$$

5. Consider the ODE:

$$
\begin{equation*}
\frac{d x}{d t}=\frac{1}{x} . \tag{2}
\end{equation*}
$$

2 (a) Write down the formula for the Forward Euler approximation with stepsize h.

3 (b) Write down the formula for the Heun approximation with stepsize h.

3 (c) The Taylor Series expansion of $x\left(t_{n}+h\right)$ around $x\left(t_{n}\right)=x_{n}$ is

$$
x\left(t_{n}+h\right)=x_{n}+\left.h \frac{d x}{d t}\right|_{x_{n}}+\left.\frac{h^{2}}{2} \frac{d^{2} x}{d t}\right|_{x_{n}}+O\left(h^{3}\right) .
$$

Rewrite the derivatives ($d x / d t$ and $d^{2} x / d t^{2}$) in the expansion in terms of $f(x)=1 / x$, and then compare the expansion with the Forward Euler formula you gave in part (a). How are they similar? What is the meaning of the difference?

Question:	1	2	3	4	5	Total
Points:	7	6	5	6	8	32
Score:						

