UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences

UBC Okanagan

Instructor: Rebecca Tyson Course: MATH 225
Date: Mar 25th, 2024 Time: 8:00am Duration: 35 minutes.
This exam has 5 questions for a total of 37 points.

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Answers without accompanying work are worth zero. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 35 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

2 1. Consider the mass-spring system

$$
\begin{equation*}
m y^{\prime \prime}+b y^{\prime}+k y=0 . \tag{1}
\end{equation*}
$$

Assume that all of the parameters are non-negative. Under what conditions is the solution of (1) considered to be underdamped?

3 2. Consider the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+0.1 y^{\prime}+25 y=2 \cos (\gamma t), \quad y(0)=1, \quad y^{\prime}(0)=0 . \tag{2}
\end{equation*}
$$

For which integer value of γ will the particular solution have the largest magnitude? What is this frequency called?
3. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+25 y=\cos (5 t) \tag{3}
\end{equation*}
$$

5 (a) Use the method of undetermined coefficients to find a particular solution.
(b) Sketch the particular solution and give the quasiperiod.

8 4. Use the method of variation of parameters to find a general solution to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \tag{4}
\end{equation*}
$$

Be sure to work from the system of two constraints on $v_{1}^{\prime}(t)$ and $v_{2}^{\prime}(t)$.
5. Consider the SIS disease diagram below. Assume also that $S+I=N$, a constant.

2 (a) Write the ODEs for this model.

4 (b) Non-dimensionalise the model using $u=S / N, v=I / N$, and $\tau=\gamma t$. Identify R_{0}.

1 (c) Write the population constraint in terms of u and v.
(d) In the phase plane, sketch the nullclines and locate the steady states in the case $R_{0}>1$ (use the dimensionless equations). Give their coordinates. What is each steady state called?

Question:	1	2	3	4	5	Total
Points:	2	3	8	8	16	37
Score:						

