Math 319-Differential Equations II Assignment \# 4 due by NOON on Fri Oct 31st in the Document Holder beside SCI 386

Special Note: Please put your assignment in the document holder on the wall outside my office, and NOT under my office door!

Instructions: You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

The assignment may be done with up to 4 other classmates (i.e. total group size: no more than $5)$. If you collaborate with classmates, the group should hand in one document with all contributing names at the top.

1. Using variation of parameters, solve the ODE

$$
\frac{d^{2} u_{n}(t)}{d t^{2}}+\left(\frac{n \pi \alpha}{L}\right)^{2} u_{n}(t)=h_{n}(t)
$$

for arbitrary coefficient functions $h_{n}(t)$.
2. Consider the vibrating string problem

$$
\begin{array}{ll}
\frac{\partial u^{2}}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, & 0<x<1, \quad t>0 \\
u(0, t)=u(1, t)=0, & t>0, \\
u(x, 0)=\sin (3 \pi x)-5 \sin (8 \pi x)+\frac{10}{3} \sin (12 \pi x), & 0<x<1, \\
\frac{\partial u}{\partial t}(x, 0)=0, & 0<x<1 . \tag{4}
\end{array}
$$

(a) Solve for $u(x, t)$. Note: For the spatial $B V P$, you may assume that the eigenvalue is positive.
(b) What method did you use to solve for the Fourier coefficients? What property of the eigenfunctions allowed you to do this?
3. Solve the PDE problem given in section $10.6 \# 2$. Find the Fourier coefficients for the series solution and give the final answer for $u(x, t)$. Note: You may start from equation (5) in the text (p 611).
4. Consider the initial value problem

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}, \tag{5}\\
& -\infty<x<\infty, \quad t>0 \tag{6}\\
& u(x, 0)= \begin{cases}\cos (\pi x), & \text { if }-1<x<1, \\
0 & \text { else }, \\
\frac{\partial u}{\partial t}(x, 0)=0, & -\infty<x<\infty\end{cases} \tag{7}\\
&
\end{align*}
$$

Figure 1: Semicircular plate for problem 6.
(a) Find the solution.
(b) Plot the solution at $t=0,1$ and 2 .
5. Given

$$
u(x, t)=\sum_{n=0}^{\infty} c_{n} \cos (n x) e^{-\alpha n^{2} t}
$$

where

$$
u(x, 0)=f(x)=2 \cos (5 x)-\frac{7}{3} \cos (8 x)+x^{2}
$$

find the Fourier coefficients c_{n} and write out the full solution for $u(x, t)$. Note: Since the eigenvalues are always of the form $\mu=n \pi x / L$, you can deduce that $0<x<\pi$.
6. Find the steady-state temperature $u(\theta, r)$ in the semicircular plate shown in Figure 1.

