UBC Okanagan

The Irving K. Barber School of Arts and Sciences

FINAL EXAMINATION

Math 319 - Intro to Partial Differential Equations

Monday, December 12, 2011
Time: 3 hours

You are being evaluated on the presentation, as well as the correctness, of your answers. Show your work clearly, include explanations and, where appropriate, references to theorems.

Useful Identities:

$$
\begin{aligned}
\sin (x \pm y) & =\sin x \cos y \pm \cos x \sin y \\
\cos (x+y) & =\cos x \sin x \cos y-\sin x \sin y \\
\cos (x-y) & 2 \sin x \sin y=\cos x \cos y+\sin x \sin y \\
\sin 2 x & =2 \sin x \cos x \\
& 2 \cos x \cos y=\cos (x-y)-\cos (x+y) \\
\sin ^{2} x=\frac{1-\cos 2 x}{2} & \cos ^{2} x=\frac{1+\cos 2 x}{2}
\end{aligned}
$$

1. Compute the Fourier series for

$$
f(x)=\left\{\begin{array}{cc}
0 & -\pi \leq x<0 \\
\sin x & 0 \leq x \leq \pi
\end{array}\right.
$$

Discuss the convergence of the series, and show graphically the function represented by the series for all x.
2. Solve the following boundary value problem:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { on } \quad 0<x<1, \quad 0<y<2
$$

$$
\begin{aligned}
& u_{x}(0, y)=u_{x}(1, y)=0 \text { for } 0<y<2, \\
& u(x, 0)=f(x) \text { and } u(x, 2)=0 \text { for } 0<x<1 .
\end{aligned}
$$

3. Solve the following initial-boundary value problem for $u(x, t)$.

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \quad \text { on } \quad 0<x<1, \quad t>0
$$

$$
\begin{aligned}
& u(0, t)=1 \text { and } \frac{\partial u}{\partial x}(1, t)=0 \text { for } t>0, \\
& u(x, 0)=0 \text { for } 0<x<1 .
\end{aligned}
$$

4. Obtain all the eigenvalues and eigenfunctions of the problem

$$
\begin{aligned}
& y^{\prime \prime}+\lambda y=0 \\
& y^{\prime}(0)=0, \\
& y(1)-2 y^{\prime}(1)=0 .
\end{aligned}
$$

5. Convert the following equation into a Sturm-Liouville equation.

$$
x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0 .
$$

6. Consider the following boundary value problem

$$
\begin{aligned}
& y^{\prime \prime}+\lambda^{2} y=0 \\
& y(0)=0, \quad y^{\prime}(\pi)=0
\end{aligned}
$$

The eigenvalues are $\lambda_{n}=\frac{(2 n-1)}{2}$ for $n=1,2, \ldots$ with corresponding eigenfunctions

$$
\phi_{n}(x)=a_{n} \sin \left(\frac{2 n-1}{2}\right) x .
$$

Express $f(x)=x$ in terms of an eigenfunction expansion.
7. Consider the following boundary value problem:

$$
\begin{aligned}
& x^{2} y^{\prime \prime}(x)+2 x y^{\prime}(x)=h(x) \\
& y(1)=y(2), \quad y(1)^{\prime}=y^{\prime}(2) .
\end{aligned}
$$

(a) Find the adjoint boundary value problem for the associated homogeneous problem.
(b) State the Fredholm alternative.
(c) Determine condition(s) on $h(x)$ that guarantee that the given non-homogeneous boundary value problem has a solution.

