```
a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA
```

Irving K. Barber School
of Arts and Sciences
UBC Okanagan

Instructor: Rebecca Tyson Course: MATH 319
Date: Oct 2nd, 2014 Time: 12:30pm Duration: 45 minutes.
This exam has 4 questions for a total of 20 points.

NAME: \qquad

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

This is a two-stage exam. You have 45 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

Problem Number	1	2	3	4	Total
Points Earned					
Points Out Of	5	5	6	4	20

5 1. Use the method of characteristics to transform the PDE below into an ODE. Sketch the characteristic lines. Note: Do not solve the ODE!!

$$
\begin{equation*}
2 u_{x}-3 u_{y}+x^{2} u=\frac{1}{y} \tag{1}
\end{equation*}
$$

5 2. Use the technique of "separation of variables" to transform the PDE below into a pair of ODEs. At a critical point in the calculations, why can you set both sides equal to $-\lambda$? (Note: Simply state the ODEs; do not solve them!)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-k \frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}+\mu e^{a x} u \tag{2}
\end{equation*}
$$

Note that k, μ, and a are constants.

6 3. What are the eigenfunctions and eigenvalues of the BVP below? Assume $\rho \in \mathbb{R}, \rho>0$. Note: This assumption gives you just one case to consider.

$$
\begin{align*}
& F^{\prime \prime}(x)+2 F^{\prime}(x)+\left(1+\rho^{2}\right) F(x)=0, \quad 0<x<2 \pi \tag{3a}\\
& F(0)=F(2 \pi)=0 \tag{3b}
\end{align*}
$$

4. Consider the function

$$
\begin{equation*}
f(x)=1-e^{x}, \quad 0<x<2 . \tag{4}
\end{equation*}
$$

A sketch of the function is shown in Figure 1 (last page of the test).
(a) On the interval $[-6,6]$, sketch the function to which the Fourier sine approximation of $f(x)$ converges.

2 (b) The Fourier sine series of $f(x)$ is written

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (\gamma x)
$$

(a) What is γ ?
(b) Write the formula for the coefficients b_{n}. Note: Do not solve for the coefficients!

Figures and A Few Integrals

Some integrals you may find useful:

$$
\begin{align*}
& \int x \sin (\rho x) d x=-\frac{x}{\rho} \cos (\rho x)+\frac{1}{\rho^{2}} \sin (\rho x) \tag{5}\\
& \int x \cos (\rho x) d x=\frac{x}{\rho} \sin (\rho x)+\frac{1}{\rho^{2}} \cos (\rho x) \tag{6}\\
& \int e^{x} \sin (\rho x) d x=\frac{e^{x}}{\rho^{2}+1}[\sin (\rho x)-\rho \cos (\rho x)] \tag{7}\\
& \int e^{x} \cos (\rho x) d x=\frac{e^{x}}{\rho^{2}+1}[\rho \sin (\rho x)+\cos (\rho x)] \tag{8}
\end{align*}
$$

Figure 1: Plot of $f(x)$ for question 4.

