Irving K. Barber School
of Arts and Sciences
UBC Okanagan

Instructor: Rebecca Tyson Course: MATH 319
Date: Oct 2nd, 2014 Time: 12:30pm Duration: 45 minutes.
This exam has 7 questions for a total of 35 points.

NAME: \qquad NAME: \qquad

NAME: \qquad NAME: \qquad

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

This is a two-stage exam. You have 45 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

Problem Number	1	2	3	4	5	6	Total	BONUS
Points Earned								
Points Out Of	6	3	6	6	6	5	35	5

6 1. Consider the PDE problem below:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<L, \quad t>0, \\
u(0, t)=U_{1}, \quad \frac{\partial u}{\partial x}(L, t)=U_{2}, & t>0 \\
u(x, 0)=f(x), & 0<x<L .
\end{array}
$$

Note that U_{1} and U_{2} are constants. Derive and solve the steady state problem that arises from the PDE problem above.
(3) 2. Given that

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial t^{2}}=25 \frac{\partial^{2} u}{\partial x^{2}}, & -\infty<x<\infty, \quad t>0 \\
u_{t}(x, 0)=0, \quad u(x, 0)=f(x), & -\infty<x<\infty,
\end{array}
$$

what is the d'Alembert solution? Write it out algebraically, and then show what this solution means on the axis below by sketching the solution at $\mathrm{t}=2$.

Figure 1: Plot of $f(x)$ for question 2.

6 3. Consider the BVP below:

$$
F^{\prime \prime}(x)+\mu^{2} F(x)=0, \quad F^{\prime}(0)=0, \quad F(1)+F^{\prime}(1)=0 .
$$

Show that this BVP has multiple solutions (assume $\mu>0$).
4. Laplace's equation on a wedge:

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0, & 0<r<1, \quad 0 \leq \theta \leq \frac{\pi}{3} \\
u(r, 0)=u\left(r, \frac{\pi}{3}\right)=0, \quad u(1, \theta)=f(\theta), & 0<r<1, \quad 0 \leq \theta \leq \frac{\pi}{3} \tag{2}
\end{array}
$$

By assuming $u(r, \theta)=F(r) G(\theta)$, we reduce the PDE problem above to a pair of ODE problems. Solving, we find that the eigenvalues and eigenfunctions of the θ problem are

$$
\begin{equation*}
\lambda_{n}=(3 n)^{2}, \quad G_{n}(\theta)=\sin (3 n \theta), \quad n \in \mathbb{N} \tag{3}
\end{equation*}
$$

The corresponding problem in r is

$$
\begin{equation*}
r^{2} F^{\prime \prime}+r F^{\prime}-\lambda F=0 \tag{4}
\end{equation*}
$$

6
(a) Solve for $F(r)$.
(b) Write the formal solution for $u(r, \theta)$ and include the formula for the unknown Fourier coefficients.

6 5. Consider the functions

$$
\begin{equation*}
\left\{\cos \left(\frac{n \pi x}{L}\right)\right\}_{n=1}^{\infty} \tag{5}
\end{equation*}
$$

Show that these functions form an orthogonal set on the interval $0 \leq x \leq L$ with respect to the weight function $w(x)=1$.

5 6. Given

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-\alpha\left(\frac{n \pi}{L}\right)^{2} t}, \text { on } 0<x<L \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
u(x, 0)=f(x)=\frac{5}{3} \sin \left(\frac{6 \pi x}{L}\right)+3 \tag{7}
\end{equation*}
$$

find the Fourier coefficients c_{n} and write out the full solution for $u(x, t)$.

7. BONUS PROBLEM (5 points)

Consider the following Dirichlet Laplace problem on a rectangular domain:

$$
\begin{array}{ll}
\nabla^{2} u=0, & 0<x<a, \quad 0<y<b \\
u(0, y)=u(a, y)=0, & 0<y<b \\
u(x, 0)=f_{1}(x), \quad u(x, b)=f_{2}(x), & 0<x<a \tag{10}
\end{array}
$$

Find the formal solution for $u(x, y)$ (don't solve for the Fourier coefficients).
(Question 7 continued.)

Information That May Be Useful

Note: On this test, you may assume that for the BVP

$$
F^{\prime \prime}+\lambda F=0
$$

the only nontrivial solutions are obtained for the case $\lambda=\mu^{2}>0$, and the corresponding solutions are

$$
F(x)=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

without showing any work.

Possibly useful identities:

$$
\begin{aligned}
& \cos (A) \cos (B)=\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
& \sin (A) \sin (B)=\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
& \sin (A) \cos (B)=\frac{1}{2}(\sin (A+B)+\sin (A-B))
\end{aligned}
$$

