Math 319 - Differential Equations II Assignment \# 1

Instructions: You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

Note: The first three problems below are review problems lifted directly from Math 225.

1. Find the general solution of the given second-order differential equation:
(a) $4 y^{\prime \prime}+y^{\prime}=0$
(b) $y^{\prime \prime}-y^{\prime}-6 y=0$
(c) $12 y^{\prime \prime}-5 y^{\prime}-2 y=0$
2. Solve the initial value problem

$$
y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

3. Consider the differential equation $y^{\prime \prime}+\lambda y=0$, with boundary conditions $y(0)=0$, and $y(\pi / 2)=0$. This is called a boundary value problem, because instead of conditions on y and y^{\prime} at a single time (say 0 or $\pi / 2$), they are given both on y and at different times (0 and $\pi / 2$). Is it possible to determine values of λ so that the problem possesses
(a) only trivial solutions?
(b) some nontrivial solutions?
4. Determine and graph the family of characteristic lines for the PDE $u_{x}(x, t)+u_{t}(x, t)=0$.
5. Find the general solution of $u_{x}+u_{y}+u=e^{-3 y}$.
6. Consider the hyperbolic PDE (also called the "wave equation" or "vibrating string equation")

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}, \tag{1}
\end{equation*}
$$

with boundary conditions and initial values given by

$$
\begin{equation*}
u(0, t)=u(4, t)=0, \quad \text { and } \quad u(x, 0)=4 \sin \left(\frac{3 \pi x}{4}\right) \tag{2}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
u(x, t)=K \sin \left(\frac{3 \pi x}{4}\right) \cos \left(\frac{6 \pi t}{4}\right) \tag{3}
\end{equation*}
$$

is a solution to (1) with (2). What must be the value of K ?
(b) Sketch the solution at $t=0$ and at $t=0.5$.
7. By inspection, determine the coefficients b_{n} on the left hand side

$$
\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)=5 \sin (2 \pi x)-7 \sin (5 \pi x)+2 \sin (9 \pi x)
$$

The function on the left hand side is called a "Fourier Series." Hint: The functions $\sin (n \pi x)$ are all linearly independent.

