Assisgnment \#2, Problem \#5, Maple portion

First I define the periodic function $f(x)$, and its Fourier series.

$$
\left.\left.\begin{array}{l}
>f:=x \rightarrow \text { piecewise }(-\mathrm{Pi}<x \text { and } x<\mathrm{Pi},|x|,-3 \cdot \mathrm{Pi}<x \text { and } x<-\mathrm{Pi},|x+2 \cdot \mathrm{Pi}|, \mathrm{Pi}<x \\
\quad \text { and } x<3 \cdot \mathrm{Pi}, \mid x-2 \cdot \mathrm{Pi}) ; \\
f:=x \rightarrow \text { piecewise }(-\pi<x \text { and } x<\pi,|x|,-3 \pi<x \text { and } x<-\pi,|x+2 \pi|, \pi<x \text { and } \\
\quad x<3 \pi,|x-2 \pi|)
\end{array}\right] \begin{array}{l}
>F f:=(x, \text { nmax }) \rightarrow \frac{\mathrm{Pi}}{2}+\operatorname{sum}\left(\frac{2 \cdot\left((-1)^{n}-1\right)}{\operatorname{Pi} \cdot n^{2}} \cdot \cos (n \cdot x), n=1 . . n \max \right) ; \\
F f:=(x, \text { nmax }) \rightarrow \frac{1}{2} \pi+\sum_{n=1}^{n \max } \frac{\left(2(-1)^{n}-2\right) \cos (n x)}{\pi n^{2}}
\end{array}\right]
$$

Below, I plot the function $f(x)$ and its Fourier series to make sure that I have computed the Fourier coefficients correctly. Notice that the Fourier series appears to be converging uniformly to $f(x)$.
$>\operatorname{plot}([f(x), F f(x, 1), F f(x, 2), F f(x, 3)], x=-3 \cdot \mathrm{Pi} . .3 \cdot \mathrm{Pi}$, colour $=[$ black, red, purple, blue]);

From the plot above, I notice that the error is largest at the points where the derivative is discontinuous, so I can compute the error at just one of these points for increasing values of nmax. I choose the point $x=0$, as that is the simplest one. Below I define the error function at the origin and plot it for increasing values of nmax. Since the error function is only defined for integer values of nmax, I need to make a listplot.
$\overline{-}>E f:=n m a x \rightarrow \operatorname{evalf}(\operatorname{abs}(F f(0, n m a x)-f(0))) ;$

From the plot above, it looks as though the critical value of nmax is 13. Below l plot the error for $n m a x=10$ to 15 , so that we can see the crossing point of 0.05 more accurately.
$[>\operatorname{listplot}([\operatorname{seq}([\operatorname{nmax}, \operatorname{Ef}(\operatorname{nmax})], n \max =10 . .15)]$, gridlines $=$ true $) ;$

[^0]Now we can see clearly that if nmax is greater than or equal to 13 , the error is below

[^0]: $\stackrel{ }{\square}$ 0.05, as required.

