Math 319 - Differential Equations II Assignment \# 2 due Mon Oct 3rd, 11:30am, SCI 386

Instructions: You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

The assignment may be done with up to 4 other classmates (i.e. total group size: no more than $5)$. If you collaborate with classmates, the group should hand in one document with all contributing names at the top.

1. Use the method of separation of variables to derive the set of ODEs associated with the following partial differential equation for $u=u(x, t)$:

$$
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial u}{\partial t}+u=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

2. Use separation of variables to solve the heat flow problem

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0, & t>0 \\
u(x, 0)=\sin (x)-7 \sin (3 x)+\sin (5 x), & 0<x<\pi
\end{array}
$$

3. The Legendre polynomials, $P_{n}(x)$, are orthogonal on the interval $[-1,1]$ with respect to the weight function $w(x)=1$. Use the fact that

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad \text { and } \quad P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}
$$

to find the first three coefficients in the expansion $f(x)=a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x)+\ldots$, where $f(x)$ is the function given by

$$
f(x)= \begin{cases}-1, & -1<x<0 \\ 1, & 0<x<1\end{cases}
$$

4. Obtain (a) the Fourier sine series, and (b) the Fourier cosine series for the function

$$
f(x)=x+\pi \quad \text { on } \quad 0<x<\pi
$$

For each series, discuss the convergence and show graphically (using Maple) the function represented by the series for all x (your graph should show three periods of the function).
5. Consider the function

$$
f(x)= \begin{cases}|x|, & \text { on } \quad-\pi \leq x \leq \pi \\ f(x+2 \pi), & \text { else }\end{cases}
$$

Use Maple to investigate the speed with which the Fourier series for f converges. In particular, determine how many terms are needed so that the error is no greater than 0.05 for all x in the interval $[-1,1]$. Your solution should include plots of $f(x)$ and the truncated Fourier series $s_{m}(x)$, as well as plots of the error $e_{m}(x)=\left|f(x)-s_{m}(x)\right|$ for various values of m.

Math 319, AA 2, SABins
Sept $18^{\text {th }}$
Lindsey Reinholz

1. Use the method of separation of variables to derive the set of ODES associated with the following partial differential equation for $u=u(x, t)$,

$$
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial u}{\partial t}+u=u^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Solution:
By the method of separation of variables, the solution should have the form

$$
u(x, t)=x(x) T(t) \text {. }
$$

$\frac{\partial^{2} u}{\partial t^{2}}=X(x) T^{\prime \prime}(t) \quad(X(x)$ is constant writ $t)$
$\frac{\partial u}{\partial t}=X(x) T^{\prime}(t) \quad(X(x)$ is constant wot $t)$
$\frac{c^{2} u}{\partial x^{2}}=X^{\prime}(x) T(t) \quad(T(t)$ is constant wot $x)$
Substituting into the PDE yields

$$
X(x) T^{\prime \prime \prime}(t)+X(x) T^{\prime}(t)+X(x) T(t)=\alpha^{2} X^{\prime}(x) T(t)
$$

Dividing by $\alpha^{2} x(x) T(t)$ gives

$$
\begin{aligned}
& \frac{T^{\prime \prime}(t)}{x^{2} T(t)}+\frac{T^{\prime}(t)}{\alpha^{2} T(t)}+\frac{1}{\alpha^{2}}=\underbrace{\frac{x^{\prime \prime}(x)}{x(x)}}_{\text {function of } x} \\
& \frac{1}{\alpha^{2}}\left(\frac{T^{\prime \prime}(t)}{T(t)}+\frac{T^{\prime}(t)}{T(t)}+1\right)=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda \quad \lambda=\text { constant }
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \frac{x^{\prime \prime}(x)}{X(x)}=-\lambda \\
& x^{\prime \prime}(x)=-\lambda x(x) \\
& x^{\prime \prime}(x)+\lambda X(x)=0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{1}{\alpha^{2}}\left(\frac{T^{\prime \prime}(t)}{T(t)}+\frac{T^{\prime}(t)}{T(t)}+1\right)=-\lambda \\
& T^{\prime \prime}(t)+T^{\prime}(t)+T(t)=-\lambda \alpha^{2} T(t) \\
& T^{\prime \prime}(t)+T^{\prime}(t)+\left(1+\lambda \alpha^{2}\right) T(t)=0 \mid
\end{aligned}
$$

Thus, the solution $u(x, t)=X(x) T(t)$ satisfies the ordinary differential equations

$$
\begin{aligned}
& X^{\prime \prime}(x)+\lambda X(x)=0 \\
& T^{\prime \prime}(t)+T^{\prime}(t)+\left(1+\lambda x^{2}\right) T(t)=0 .
\end{aligned}
$$

2. $\begin{cases}\frac{\partial u}{\partial t}=\frac{3 \partial^{2} u}{\partial x^{2}} & 02 x<\pi ; t>0 \\ u(0, t)=u(\pi, t)=0 & t \geq 0 \\ u(x, 0)=\sin (x)-7 \sin (3 x)+\sin (5 x) & 0<x<\pi\end{cases}$

Steps 1+2: Separate + form ones
Let $u(x, t)=x(x) T(t)$. Then the PDE becomes

$$
x T^{\prime}=3 x^{\prime \prime} T \Leftrightarrow \frac{T^{\prime}}{3 T}=\frac{x^{\prime \prime}}{x}=-\lambda
$$

Where λ is a constant. We thus anive at two oo ns:
(A) $X^{\prime \prime}+\lambda X=0, \quad X(0)=x(\pi)=0$
(B) $T^{\prime}+3 \lambda T=0$
step 3: Solve the ones
(17) case l: $\lambda=-\omega^{2}<0$

Then $X(x)=c_{1} e^{\omega x}+c_{2} e^{-\omega x}$.
BEs: $\left\{\begin{array}{l}x(0)=0 \\ X(\pi)=0\end{array} \Leftrightarrow\left\{\begin{array}{l}c_{1}+c_{2}=0 \\ c_{1} e^{\omega \pi}+c_{2} e^{-\omega \pi}=0\end{array} \Leftrightarrow\left\{\begin{array}{l}c_{1}=-c_{2} \\ c_{2}\left(e^{\omega \pi}-e^{\omega \pi}\right)=1\end{array}\right.\right.\right.$
\therefore either $\omega=0$ or $c_{1}=-c_{2}=0$, a po weally have trinial solutions inthis case.

Case 2: $\lambda=0$
Then $\quad X(x)=c_{1} x+c_{2}$.
BCs: $\left\{\begin{array}{l}x(0)=0 \\ x(\pi)=0\end{array} \Leftrightarrow\left\{\begin{array}{l}c_{2}=0 \\ c_{1} \pi=0\end{array} \Leftrightarrow\left\{\begin{array}{l}c_{2}=0 \\ c_{1}=0\end{array}\right.\right.\right.$

- we arly havectrinial solutíns in Hhis case.
case 3: $\lambda=\omega^{2}>0$
Then $x(x)=c_{1} \cos (\omega x)+c_{2} \sin (\omega x)$.
$B C \operatorname{cs:}\left\{\begin{array}{l}x(0)=0 \\ x(\pi)=0\end{array}\right.$ \Leftrightarrow as $\left\{\begin{array}{l}c_{1}=0 \\ c_{2} \sin (\omega \pi)=0\end{array}\right.$
$\therefore f o r ~ n a r t i v i a l ~ s o l u t i o n s ~ w e ~$ leguire

$$
\omega \pi=n \pi \text { or } \omega_{n}=N
$$

and the siggenafunctions are

$$
x_{n}(x)=c_{n} \sin (n x)
$$

(B) $T^{\prime}+3 \lambda T=0 \cos T^{\prime}+3 w^{2} T=0$ For eack value of w we have

$$
T_{n}{ }^{\prime}+3 n^{2} T=0 \varangle \Delta T_{n}=d_{n} e^{-3 n^{2} t}
$$

step 4: Supenposition

$$
\begin{aligned}
& u: \frac{\text { apenposition }}{u(x, t)}=\sum_{n=1}^{\infty} c_{n} \sin (n x) d_{n} e^{-3 n^{2} t} \\
& \\
& =\sum_{n=1}^{\infty} b_{n} \sin (n x) e^{-3 n^{2} t}
\end{aligned}
$$

step5: Applyids

$$
\begin{aligned}
& u(x, 0)=\sin (x)-7 \sin (3 x)+\sin (5 x) \\
&=\sum_{n=1}^{\infty} b_{n} \sin (n x) \\
& \therefore \begin{cases}b_{1} & =1, b_{3}=-7, b_{5}=1 \\
b_{n} & =0 \quad \forall n \in \mathbb{N} \neq 1,3,5\end{cases}
\end{aligned}
$$

The final solution is

$$
\begin{aligned}
u(x, t)=[& \sin (x) e^{-3 t}-7 \sin (3 x) e^{-27 t} \\
& \left.+\sin (5 x) e^{-75 t}\right]
\end{aligned}
$$

Math 319-Assignment \#2
3. The Legendre polynomials $P_{m}(x)$ and $P_{n}(x)$ are said to be orthogonal in the interval $-1 \leq x \leq 1$ provided

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 \quad m \neq n
$$

and as a result, we have

$$
\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{n+1} \quad m=n
$$

Any function $f(x)$ which is finite and single-valued in the interval $-1 \leq x \leq 1$, and which has a finite number of discontinuities within this interval can be expressed as a series of Legendre polynomials.
We let

$$
\begin{aligned}
f(x) & =a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x)+\cdots \quad-1 \leq x \leq 1 \\
& =\sum_{n=0}^{0} a_{n} P_{n}(x)
\end{aligned}
$$

Multiplying both sidles by $\operatorname{Pm}(x) d x$ and integrating with respect to x from $x=-1$ to $x=1$ gives

$$
\int_{-1}^{1} f(x) P_{n}(x) d x=\sum_{n=0}^{\infty} a_{n} \int_{-1}^{1} P_{m}(x) P_{n}(x) d x
$$

By means of the orthogonality property of the legendre polynomials we can write

$$
a_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x \quad n=0,1,2,3, \ldots
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
-1, & -1<x<0 \\
1, & c<x<1
\end{array}\right. \\
& P_{0}(x)=1, P_{1}(x)=x, \text { and } P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} \\
& f(x)=a_{0} P_{0}(x)+a_{1} R(x)+a_{2} P_{2}(x)+\cdots
\end{aligned}
$$

To find the first coefficient, a_{0}, multiply both sides by $P_{0}(x) d x$ and integrate writ x from $x=-1$ to $x=1$.

$$
\begin{aligned}
& \int_{-1}^{1} f(x) P_{0}(x) d x=\int_{-1}^{1}\left(a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x)+\cdots \quad P_{0} \quad P_{0}(x) d x\right. \\
& =a_{0} \int_{-1}^{-1} P_{0}^{2}(x) d x+a_{1} \int_{-1}^{1} P_{0}(x) P_{1}(x) d x+a_{2} \int_{-1}^{1} P_{1}(x) P_{2}^{-0}(x) d x+ \\
& \begin{array}{l}
\text { Byorthagonality } \\
\text { condition }
\end{array} \\
& \int_{-1}^{1} f(x) P_{0}(x) d x=a_{0} \int_{-1}^{1}(1)^{2} d x \\
& =a_{0} \times\left.\right|_{-1} ^{1} \\
& =a_{0}\left(1^{-1}(-1)\right) \\
& =2 a_{0} \\
& a_{0}=\frac{1}{2} \int_{-1}^{1} f(x) P_{0}(x) d x \\
& =\frac{1}{2}\left[\int_{-1}^{0}-1(1) d x+\int_{0}^{1}(1)(1) d x\right] \\
& =\frac{1}{2}\left[-\left.x\right|_{-1} ^{0}+\left.x\right|_{0} ^{1}\right] \\
& =\frac{1}{2}[0-(-(-1))+1-0] \\
& =\frac{1}{2}[-1+1]=0 \text {. } \\
& a_{0}=0 \\
& \text { (all the rest equal } 0 \text { too) }
\end{aligned}
$$

Sept 30 $0^{\text {th }}$
LindseyReinholz
To find the second coefficient, a_{1}, multiply both sides by $P_{1}(x) d x$ and integrate wot x from $x=-1$ to $x=1$.

$$
\begin{aligned}
\int_{-1}^{1} f(x) P_{1}(x) d x & =\int_{-1}^{1}\left(a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x)+\cdots\right) P_{1}(x) d x \\
& =a_{0} \int_{-1}^{1} P_{0}(x)_{1}(x) d x+a_{1} \int_{-1}^{1} P_{1}^{2}(x) d x+a_{2} \int_{-1}^{1} P_{1}(x) P_{2}(x) d x+0 \\
& =a_{1} \int_{-1}^{1} P_{1}^{2}(x) d x \\
& =a_{1} \int_{-1}^{1} x^{2} d x \\
& =\left.a_{1} \frac{x^{3}}{3}\right|_{-1} ^{1} \\
& =a_{1}\left(\frac{1}{3}-\frac{(-1)^{3}}{3}\right) \\
& =\frac{2}{3} a_{1} \\
a_{1} & =\frac{3}{2} \int_{-1}^{1} f(x) P_{1}(x) d x \\
& =\frac{3}{2}\left[\int_{-1}^{0}(-1) x d x+\int_{0}^{1}(1) x d x\right] \\
& =\frac{3}{2}\left[-\left.\frac{x^{2}}{2}\right|_{-1} ^{0}+\left.\frac{x^{2}}{2}\right|_{0} ^{1}\right] \\
& =\frac{3}{2}\left[0-\left(-\frac{(-1)^{2}}{2}\right)+\frac{1^{2}}{2}-0\right] \\
& =\frac{3}{2}\left[\frac{1}{2}+\frac{1}{2}\right] \\
& =\frac{3}{2} \\
a_{1} & =\frac{3}{2}
\end{aligned}
$$

To find the third coefficient, a_{2}, multiply both sides by $P_{2}(x) d x$ and integrate wort x from $x=-1$ to $x=1$

$$
\begin{aligned}
& \int_{-1}^{1} f(x) P_{2}(x) d x=\int_{-1}^{1} a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x)+\cdots P_{2}(x) d x \\
& =a_{0} \int_{-1}^{1} P_{0}^{0}(x) P_{2}^{1}(x) d x+a_{1} \int_{-1}^{1} P_{1}(x) P_{2}^{0}(x) d x+a_{2} \int_{1}^{1} P_{2}^{2}(x) d x+\cdots \\
& \text { By orthogonality condition? } \\
& =a_{2} \int_{-1}^{1} P_{2}^{2}(x) d x \\
& =a_{2} \int_{-1}^{1}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)^{2} d x \\
& =a_{2} \int_{-1}^{1}\left(\frac{9}{4} x^{4}-\frac{3}{2} x^{2}+\frac{1}{4}\right) d x \\
& =\left.a_{2}\left[\frac{9}{4} \frac{x^{5}}{5}-\frac{3}{2} \frac{x^{3}}{3}+\frac{1}{4} x\right]\right|_{-1} ^{1} \\
& =a_{2}\left[\frac{9}{4} \cdot \frac{1}{5}-\frac{3}{2} \cdot \frac{1}{3}+\frac{1}{4}(1)-\frac{9}{4} \frac{(-1)^{5}}{5}-\frac{3}{2} \cdot\left(\frac{-1)^{3}}{3}+\frac{1}{4}(-1)\right)\right] \\
& =a_{2}\left[\frac{9}{20}-\frac{1}{2}+\frac{1}{4}+\frac{9}{20}-\frac{1}{2}+\frac{1}{4}\right] \\
& =a_{2}\left[\frac{9}{20}-\frac{10}{20}+\frac{5}{20}+\frac{9}{20}-\frac{10}{120}+\frac{5}{20}\right] \\
& =a_{2}\left[\frac{8}{20}\right] \\
& =a_{2}\left[\frac{2}{5}\right] \\
& a_{2}=\frac{5}{2} \int_{-1}^{1} f(x) P_{2}(x) d x \\
& =\frac{5}{2}\left[\int_{-1}^{0}(-1)\left(\frac{3}{2} x^{2}-\frac{1}{2}\right) d x+\int_{0}^{1}(1)\left(\frac{3}{2} x^{2}-\frac{1}{2}\right) d x\right] \\
& \left.=\left.\frac{5}{2}[-1)\left(\frac{3}{2} \frac{x^{3}}{3}-\frac{1}{2} x\right)\right|_{-1} ^{0}+\left.\left(\frac{3}{2} \cdot \frac{x^{3}}{3}-\frac{1}{2} x\right)\right|_{0} ^{1}\right] \\
& \left.=\frac{5}{2}\left[\frac{1}{2}\left(0-0-(-1)^{3}-(-1)\right)+\frac{1}{2}(1-1)-(0-0)\right)\right]
\end{aligned}
$$

$\operatorname{sep}+30^{t h}$

$$
\begin{aligned}
& a_{2}=\frac{5}{2}\left[\frac{1}{2}(0)+\frac{1}{2}(0)\right]=0 \\
& a_{2}=0
\end{aligned}
$$

Thus, the first three coefficients in the expansion $f(x)=a_{0} P_{0}(x)+a_{1} P_{1}(x)+a_{2} P_{2}(x)+\cdots$
are $a_{0}=0, a_{1}=3 / 2$ and $a_{2}=0$, so

$$
f(x)=\frac{3}{2} p_{1}(x)+\ldots
$$

$$
4 \cdot f(x)=x+\pi \text { on } 0<x<\pi
$$

a) Farrier sine Series.

Sine series \leftrightarrow Odd Extension

$$
f(x)=\left\{\begin{array}{cc}
x-\pi, & -\pi<x<0 \\
x+\pi, & 0<x<\pi
\end{array} \quad f^{\prime}(x)= \begin{cases}1 & -\pi<x<0 \\
1 & 0<x<\pi\end{cases}\right.
$$

- $f(x)$ is piece-tuise continuous on $[-\pi, \pi]$.

$f^{\prime}(x)$ is piece-wise continuous on $[-\pi, \pi]$
Since both f and f^{\prime} are piece-wise continues on $[-\pi, \pi]$] then for every $x \in(-\pi, \pi)$, the series converges
pointuise

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]
$$

For $x= \pm L$, the series converges to

$$
\frac{1}{2}\left[f\left(-L^{+}\right)+f\left(L^{-}\right)\right] \text {where } L=\pi
$$

At the point $x=0$, the series will converge to

$$
\frac{f\left(0^{+}\right)+f\left(0^{-}\right)}{2}=\frac{\pi+(-\pi)}{2}=0
$$

At the endpoints, the series will converge to

$$
\frac{f\left(-\pi^{+}\right)+f\left(\pi^{2}\right)}{2}=\frac{-2 \pi+2 \pi}{2}=0
$$

Thus, the Fourier series will converge pointwise to:

$$
f(x)=\left\{\begin{array}{cc}
0 & x=-\pi \\
x-\pi & -\pi<x<0 \\
0 & x=0 \\
x+\pi & 0<x<\pi \\
0 & x=\pi
\end{array}\right.
$$

Sept $30^{\text {th }}$
The Fourier Series for $f(x)$ will have the form:

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
$$

where

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{2} f(x) \sin \frac{n \pi x}{L} d x \quad n=1,2,3, \\
& =\frac{2}{\pi} \int_{0}^{\pi}(x+\pi) \sin \frac{n \pi x}{\pi} d x \\
& \left.=\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x+\int_{0}^{\pi} \pi \sin n x d x\right] \\
& \text { Integration by Parts: }
\end{aligned}
$$

Integration by Parts:

$$
u=x \quad d v=\sin n x d x
$$

$$
d u=d x \quad v=-\frac{1}{n} \cos n x
$$

$$
=\frac{2}{\pi}\left[\left.\frac{-x}{n} \cos n x\right|_{0} ^{\pi}-\int_{0}^{\pi}-\frac{1}{n} \cos n x d x-\left.\frac{\pi}{n} \cos n x\right|_{0} ^{\pi}\right]
$$

$$
=\frac{2}{\pi}\left[\left.\frac{-x}{n} \cos n x\right|_{0} ^{\pi}+\left.\frac{1}{n^{2}} \sin n x\right|_{0} ^{\pi}-\left.\frac{\pi}{n} \cos n x\right|_{0} ^{\pi}\right]
$$

$$
=\frac{2}{\pi}\left[-\frac{\pi}{n} \cos n \pi+\frac{1}{n^{2}} \sin n \pi-\frac{\pi}{n} \cos n \pi-\left(0+0-\frac{\pi}{n} \cos (0)\right)\right]
$$

$$
=\frac{2}{\pi}\left[-\frac{\pi}{n}(-1)^{n}-\frac{\pi}{n}(-1)^{n}+\frac{\pi}{n}\right]
$$

$$
=\frac{2}{n}\left(-2(-1)^{n}+1\right)
$$

$$
b_{n}=\frac{2}{n}\left(2(-1)^{n+1}+1\right)
$$

The Fourier Sine Series is:

$$
f(x)=\sum_{n=1}^{\infty} \frac{2}{n}\left(2(-1)^{n+1}+1\right) \sin n x
$$

b) Fourier Cosine Series

Cosine Series \leftrightarrow Even Extension

$$
f(x)=\left\{\begin{array}{ll}
-x+\pi, & -\pi<x<0 \\
x+\pi, & 0<x<\pi
\end{array} \quad f^{\prime}(x)=\left\{\begin{array}{rr}
-1, & -\pi<x<0 \\
1, & 0<x<\pi
\end{array}\right.\right.
$$

$f(x)$ is continuous on $[-\pi, \pi]$.

$f^{\prime}(x)$ is piece-wise continuous on $[-\pi, \pi]$.
Since f is continuais and f^{\prime} is piece-ulise continuous on $[-\pi, \pi]$ then the series converges uniformly to f on $[\pi, \pi]$.

The Fourier Casing Series for $f(x)$ will have the form:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

Sept $30^{\text {th }}$

$$
\begin{aligned}
a_{0} & =\frac{2}{L} \int_{0}^{L} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(x+\pi) d x \\
& =\left.\frac{2}{\pi}\left[\frac{x^{2}}{2}+\pi x\right]\right|_{0} ^{\pi} \\
& =\frac{2}{\pi}\left[\frac{\pi^{2}}{2}+\pi \cdot \pi-0\right] \\
& =\frac{2}{\pi}\left[\frac{3 \pi}{2}\right] \\
& =\frac{3 \pi}{\pi} \\
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(x+\pi) \cos \frac{n \pi x}{\pi} d x \\
& =\frac{2}{\pi}\left[\int_{0}^{\pi} x \cos n x d x+\int_{0}^{\pi} \pi \cos n x d x\right]
\end{aligned}
$$

\uparrow
Integration by Parts:

$$
\begin{array}{ll}
u=x & d v=\cos n x d x \\
d u=d x & v=\frac{1}{n} \sin n x
\end{array}
$$

$$
\begin{aligned}
& =\frac{2}{\pi}\left[\left.\frac{x}{n} \sin n x\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{1}{n} \sin n x d x+\left.\frac{\pi}{n} \sin n x\right|_{0} ^{\pi}\right] \\
& =\frac{2}{\pi}\left[\left.\frac{x}{n} \sin n\right|_{0} ^{\pi}+\left.\frac{1}{n^{2}} \cos n x\right|_{0} ^{\pi}+\left.\frac{\pi}{n} \sin n x\right|_{0} ^{\pi}\right] \\
& =\frac{2}{\pi}\left[\frac{\pi}{n} \sin n^{\pi} \pi+\frac{1}{n^{2}} \cos n \pi+\frac{\pi}{n} \sin n \pi-\left(0+\frac{1}{n^{2}} \cos (0)+0\right)\right] \\
& =\frac{2}{\pi}\left[\frac{1}{n^{2}}(-1)^{n}-\frac{1}{n^{2}}\right] \\
& =\frac{2}{n^{2} \pi}\left((-1)^{n}-1\right)
\end{aligned}
$$

Note that if

$$
\begin{aligned}
& n=\text { even } \Longrightarrow \frac{2}{n^{2} \pi}\left((-1)^{n}-1\right)=0 \\
& n=\text { odd } \Longrightarrow \frac{2}{n^{2} \pi}\left((-1)^{n}-1\right)=\frac{-4}{n^{2} \pi}
\end{aligned}
$$

Thus, the Fourier Cosine Series is:

$$
f(x)=\frac{3 \pi}{2}+\sum_{n=1}^{\infty} \frac{-4}{(2 n-1)^{2} \pi} \cos (2 n-1) x
$$

5.

$$
\begin{aligned}
& h(x)=|x| \\
& f(x)=\left\{\begin{array}{lr}
\mid h(x), & \text { on }-\pi<x<\pi \\
h(x+2 n \pi), & \text { or }-(1+2 n) \pi<x<(1-2 n) \pi \\
n= \pm 1, \pm 2, \ldots
\end{array}\right.
\end{aligned}
$$

$\because h(x)$ is even, the Fruvier peries for $f(x)$ will be a Fonnier cosche senies:

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{\pi}^{\pi} h(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x d x=\left.\frac{2}{\pi} \frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{1}{\pi}\left(\pi^{2}-0\right) \\
& =\frac{\pi}{\pi} \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} h(x) \cos \left(\frac{n \pi n}{\pi}\right) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} h(x) \cos (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x=\frac{2}{\pi}\left[\frac{x}{n} \sin (n x)+\frac{1}{n^{2}} \cos (u x)\right]_{0}^{\pi} \\
& =\frac{2}{\pi} \frac{1}{n}\left[\frac{\pi}{\pi} \sin (n \pi)+\frac{1}{n} \cos (n \pi)-0-\frac{1}{n}\right] \\
& =\frac{2}{\pi n^{2}}\left((-1)^{n}-1\right) \\
\therefore f(x) & =\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{\pi n^{2}}\left((-1)^{n}-1\right) \cos (n x)
\end{aligned}
$$

Assisgnment \#2, Problem \#5, Maple portion

First I define the periodic function $f(x)$, and its Fourier series.

$$
\begin{align*}
& >f:=x \rightarrow \text { piecewise }(-\mathrm{Pi}<x \text { and } x<\mathrm{Pi},|x|,-3 \cdot \mathrm{Pi}<x \text { and } x<-\mathrm{Pi},|x+2 \cdot \mathrm{Pi}|, \mathrm{Pi}<x \\
& \text { and } x<3 \cdot \mathrm{Pi},|x-2 \cdot \mathrm{Pi}|) \text {; } \\
& f:=x \rightarrow \text { piecewise }(-\pi<x \text { and } x<\pi,|x|,-3 \pi<x \text { and } x<-\pi,|x+2 \pi|, \pi<x \text { and } \tag{1}\\
& x<3 \pi,|x-2 \pi|) \\
& {\left[>F f:=(x, \text { nmax }) \rightarrow \frac{\mathrm{Pi}}{2}+\operatorname{sum}\left(\frac{2 \cdot\left((-1)^{n}-1\right)}{\mathrm{Pi} \cdot n^{2}} \cdot \cos (n \cdot x), n=1 . . n \max \right) ;\right.} \\
& F f:=(x, n \max) \rightarrow \frac{1}{2} \pi+\sum_{n=1}^{n \max } \frac{\left(2(-1)^{n}-2\right) \cos (n x)}{\pi n^{2}} \tag{2}
\end{align*}
$$

Below, I plot the function $f(x)$ and its Fourier series to make sure that I have computed the Fourier coefficients correctly. Notice that the Fourier series appears to be converging uniformly to $f(x)$.
$>\operatorname{plot}([f(x), F f(x, 1), F f(x, 2), F f(x, 3)], x=-3 \cdot \mathrm{Pi} . .3 \cdot \mathrm{Pi}$, colour $=[$ black, red, purple, blue]);

From the plot above, I notice that the error is largest at the points where the derivative is discontinuous, so I can compute the error at just one of these points for increasing values of nmax. I choose the point $x=0$, as that is the simplest one. Below I define the error function at the origin and plot it for increasing values of nmax. Since the error function is only defined for integer values of nmax, I need to make a listplot.
$\overline{>} \quad E f:=n m a x \rightarrow \operatorname{evalf}(\operatorname{abs}(F f(0, n m a x)-f(0))) ;$

From the plot above, it looks as though the critical value of nmax is 13. Below l plot the error for $n m a x=10$ to 15 , so that we can see the crossing point of 0.05 more accurately.
$[>\operatorname{listplot}([\operatorname{seq}([\operatorname{nmax}, \operatorname{Ef}(\operatorname{nmax})], n \max =10 . .15)]$, gridlines $=$ true $) ;$

[^0]Now we can see clearly that if nmax is greater than or equal to 13 , the error is below

[^0]: $\stackrel{ }{\square}$ 0.05, as required.

