Math 319 - Differential Equations II Assignment \# 3

Instructions: You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

1. Find a formal solution for $u(x, t)$ satisfying the initial boundary-value problem defined by

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{1}{5} \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<2 \pi, \quad t>0 \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(2 \pi, t)=0, & t>0, \\
u(x, 0)=f(x), & 0<x<2 \pi
\end{array}
$$

where

$$
f(x)=-|x-\pi|+\pi, \quad 0<x<2 \pi .
$$

Use Maple to confirm that your Fourier coefficients are correct, and plot $u(x, t)$ for $0<t<10$.
2. Find a formal solution for the initial boundary value problem

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, & 0<x<\pi, \quad t>0 \\
u(0, t)=0, \quad u(\pi, t)+\frac{\partial u}{\partial x}(\pi, t)=0, & t>0, \\
u(x, 0)=g(x), & 0<x<\pi .
\end{array}
$$

Your final solution will contain integral expressions for the coefficients in the Fourier series. Note that you need to extend $g(x)$ as appropriate in order to get the correct coefficients. You should arrive at formulas that look like the ones in section 10.4 of your text.
3. Consider the following initial boundary-value problem for the heat equation in a thin bar of length L :

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+P(x), & 0<x<L, \quad t>0 \\
u(0, t)=K, \quad \frac{\partial u}{\partial x}(L, t)=u(L, t), & t>0, \\
u(x, 0)=h(x), & 0<x<L .
\end{array}
$$

(a) Give physical interpretations for the boundary conditions at $x=0, x=L$, and at $t=0$.
(b) Find a formal solution for $u(x, t)$.
4. Find a formal solution to the given boundary value problem.

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, & 0<x<a, \quad 0<y<b \\
u(x, 0)=u(x, b)=0, & 0<x<a \\
u(a, y)=0, \quad \frac{\partial u}{\partial x}(0, y)=-1, & 0<y<b .
\end{array}
$$

