## Math 319 - Differential Equations II Assignment \# 5

Instructions: You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

1. Verify that the eigenfunctions of

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+\left(1+\lambda^{2}\right) y=0, \quad 0<x<1 \\
& y(0)=y^{\prime}(1)=0
\end{aligned}
$$

form an orthogonal set. Then express $f(x)=1$ in an eigenfunction expansion.
2. Show that the problem

$$
\begin{aligned}
& x^{2} y^{\prime \prime}-\lambda\left(x y^{\prime}-y\right)=0, \quad 1<x<2, \\
& y(1)=0, \quad y(2)-y^{\prime}(2)=0,
\end{aligned}
$$

has only one real eigenvalue, and find the corresponding eigenfunction.
3. Consider the following boundary value problem:

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+2 x y^{\prime}+\frac{5}{4} y=h(x), \quad 1<x<e^{\pi} \\
& y(1)=y\left(e^{\pi}\right)=0
\end{aligned}
$$

(a) Find the adjoint boundary value problem for the associated homogeneous problem.
(b) Determine the conditions on $h(x)$ that guarantee that the given nonhomogeneous boundary value problem has a solution.
4. Determine whether the given linear differential operator $L[y]$, whose domain consists of all functions that have continuous second derivatives on the interval $[0, \pi]$ and satisfy the given boundary conditions, is selfadjoint.

$$
\begin{aligned}
& L[y]=\left(1+x^{3}\right) y^{\prime \prime}+3 x^{2} y^{\prime}+\lambda r y \\
& y^{\prime}(0)=0, \quad y(\pi)-\left(1+\pi^{3}\right) y^{\prime}(\pi)=0 .
\end{aligned}
$$

