```
a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA
```

Irving K. Barber School
of Arts and Sciences
UBC Okanagan

Instructor: Rebecca Tyson Course: MATH 319
Date: Oct 4th, 2023 Time: 1:00pm Duration: 45 minutes.
This exam has 5 questions for a total of 48 points.

UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 45 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 35 minutes.

Note: The table of marks appears on the second last page of the exam.

10 1. Consider the PDE

$$
\begin{equation*}
2 \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}+5 u=x y \tag{1}
\end{equation*}
$$

Show, using an appropriate transformation of variables, that the PDE (1) in $u(x, y)$ can be converted to a PDE in $v(w, z)$ with only one derivative (in a single variable), where (w, z) are the new independent variables. Show all steps in your work. Do NOT solve the ODE.

7 2. Apply the technique of "separation of variables" to the PDE

$$
\begin{equation*}
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}-\alpha^{2} \frac{\partial}{\partial x}\left(x \frac{\partial u}{\partial x}\right) . \tag{2}
\end{equation*}
$$

If the technique works, give the two ODEs that result. If the technique does not work, explain why. Note that D and α are constants.

11 3. The heat flow problem

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<2, \quad t>0 \\
u(0, t)=u(2, t)=0, & t>0 \\
u(x, 0)=f(x), & 0<x<2, \tag{3c}
\end{array}
$$

where

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(\frac{n \pi x}{2}\right) \tag{4}
\end{equation*}
$$

can be solved using separation of variables. Assuming that $u(x, t)=X(x) T(t)$, we find that the PDE and boundary conditions can be rewritten as a pair of ODEs:

$$
\begin{array}{ll}
\text { Problem A : } & X^{\prime \prime}+\lambda X=0, \quad X(0)=X(2)=0 \\
\text { Problem B : } & T^{\prime}+5 \lambda T=0
\end{array}
$$

If $\lambda \leq 0$, Problem A only admits trivial solutions. Finish solving for the formal solution of the heat flow problem (3) with (4), assuming that $\lambda=\omega^{2}$ (i.e. start partway through step 3).
workspace for problem \#3

13 4. Consider the function

$$
f(x)=e^{x}, \quad 0<x<\frac{\pi}{3} .
$$

(a) On the axes below, and using two different colours or line types, sketch
i. $f(x)$, and
ii. three periods of the function $g(x)$ to which the Fourier cosine series of $f(x)$ converges.
Label all important axis values (only a few have been provided).

Figure 1: Plot of $f(x)$ and for question a.
(b) Will convergence be uniform or pointwise? (Circle the correct response.) Explain.
(c) Find the Fourier cosine series for $f(x)$. You may find it useful to consult the integral table provided on the inside back page of the test.
workspace for question \#4
5. Consider the IBVP

$$
\begin{array}{lr}
\frac{\partial u}{\partial t}=\gamma \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<L, t>0 \\
u(0, t)=U_{1}, u(L, t)=U_{2}, & t>0 \\
u(x, 0)=f(x), & 0<x<L \tag{8}
\end{array}
$$

where $L>0$ and $\gamma>0$.
(a) Explain why the solution is composed of a steady state portion $v(x)$ and a transient portion $w(x, t)$.
(b) Derive the steady state problem and find the solution.

Question \#5 continues on the next page.

Question \#5 continued.
2 (c) Set up the IBVP for the transient portion.

Possibly Useful Information

Some integrals you may find useful:

$$
\begin{aligned}
& \int x \sin (\rho x) d x=-\frac{x}{\rho} \cos (\rho x)+\frac{1}{\rho^{2}} \sin (\rho x) \\
& \int x \cos (\rho x) d x=\frac{x}{\rho} \sin (\rho x)+\frac{1}{\rho^{2}} \cos (\rho x) \\
& \int e^{x} \sin (\rho x) d x=\frac{e^{x}}{\rho^{2}+1}[\sin (\rho x)-\rho \cos (\rho x)] \\
& \int e^{x} \cos (\rho x) d x=\frac{e^{x}}{\rho^{2}+1}[\rho \sin (\rho x)+\cos (\rho x)] \\
& \int x e^{a x} d x=\left(\frac{x}{a}-\frac{1}{a^{2}}\right) e^{a x} \\
& \int x^{2} e^{a x} d x=\left(\frac{x^{2}}{a}-\frac{2 x}{a^{2}}+\frac{2}{a^{3}}\right) e^{a x}
\end{aligned}
$$

Question:	1	2	3	4	5	Total
Points:	10	7	11	13	7	48
Score:						

