Ex. 1. Compute the Forme Series for

$$
f(x)=\left\{\begin{array}{rc}
-1 & -\pi<x<0 \\
1 & 0<x<\pi
\end{array}\right.
$$

we write

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos n x+b_{n} \sin n x\right]
$$

period is 2π ।

$$
L=\pi
$$

the seine (if it avenge) converges to.
a 2π parodic Suction: $\tilde{f}(x)$

$$
\tilde{f}(x)=\tilde{f}(x+2 \pi)
$$

* Ado to

Compute the coefficient

$$
\text { for } n=0,1,2, \ldots
$$

$$
a_{n}=\frac{1}{\pi} \int_{-\frac{\pi}{d}}^{\pi} \underset{\substack{d \\ \operatorname{ded} x}}{f(x) \cos n x} d x
$$

(43)

$$
b_{n}=\frac{1}{\pi} \int_{-k}^{\pi} \underbrace{\pi}_{\text {odd } x \text { odd }} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} \sin w x d x
$$

$$
=\frac{2}{\pi}\left[-\left.\frac{\cos n}{n}\right|_{0} ^{\pi}\right]
$$

$\cos n \pi$

$$
=\frac{2}{\pi}\left[\frac{1}{n}-\frac{(-1)^{n}}{n}\right]
$$

$$
u=1,2,3
$$

$$
\hat{f}(x) \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \sin n x
$$

$$
=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}=\frac{4}{\pi}[s
$$

* Eourier series have a numde wider the soliore P,D.E.
* Phenircal Geographer/Enginners \sim mecanip sigral
break don'ento ts Fouries hourveric a argaret- Repusebrer
the figgrecey <n eiguralues "Spectral Avdeysis" audibee tone

Another example (ex 3 in text):
Complete the Finer series for $f(x)=|x|,-1 \leqslant x \leqslant 1$

foin
$f(x)$ is even, $\therefore f(x) \sin (n \pi x)$ is old, so

$$
\int_{-1}^{1} f(x) \sin (n \pi x) d x=0 .
$$

Similarly, fax) $\cos (n \pi x)$ is even, so

$$
\begin{aligned}
& a_{0} \int_{-1}^{1} f(x) d x=2 \int_{0}^{1} x d x=\left.x^{2}\right|_{0} ^{1}=1 \\
& a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x=2 \int_{0}^{1} x \cos (n \pi x) d x=\frac{2}{\pi^{2} n^{2}}\left[(-1)^{n}-1\right] \\
& n=1,2,3, \ldots
\end{aligned}
$$

$$
\therefore f(x) \sim \frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{\pi^{2} n^{2}}\left[(-1)^{n}-1\right] \cos (n \pi n)
$$

Ex 3
Compute the Fourier Series for

$$
f(x)= \begin{cases}1, & -2<x<0 \\ x_{1}, & 0<x<2\end{cases}
$$

Neither odd nov even.

$$
L=2
$$

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-2}^{2} f(x) d x=\frac{1}{2} \int_{-2}^{0} 1 d x+\frac{1}{2} \int_{0}^{2} x d x=\frac{1}{2}\left[2+\left.\frac{x^{2}}{2}\right|_{0} ^{2}=\frac{2+2}{2}=2\right. \\
a_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{-2}^{0} \cos \left(\frac{n \pi x}{2}\right) d x+\frac{1}{2} \int_{0}^{2} x \cos \left(\frac{n \pi x}{2}\right) d x \\
& =\left.\frac{1}{2} \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right|_{-2} ^{0}+\frac{1}{2}\left[\frac{4}{(n \pi)^{2}} \cos \left(\frac{n \pi x}{2}\right)+\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} \\
& =(0-0)+\frac{1}{2}\left[\frac{1}{(n \pi)^{2}}\left[(-1)^{n}-1\right]+\frac{4}{n \pi} \cdot 0\right] \\
& =\frac{2\left[(-1)^{n}-1\right]}{(n \pi)^{2}} \quad b_{n}=\ldots
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{-2}^{0} \sin \left(\frac{n \pi x}{2}\right) d x+\frac{1}{2} \int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x \\
& =-\left.\frac{1}{2} \frac{2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right|_{-2} ^{0}+\frac{1}{2}\left[\frac{-2 x}{n \pi} \cos \left(\frac{n \pi x}{2}\right)+\frac{4}{(n \pi)^{2}} \sin \left(\frac{n \pi x}{2}\right)\right]_{0}^{2} \\
& =-\frac{1}{n \pi}\left[1-(-1)^{n}\right]+\left[-\frac{2}{n \pi}\left[(-1)^{n}-1\right]+\frac{2}{(n \pi)^{2}} \cdot 0\right] \\
& =-\frac{1}{n \pi}\left[1-(-1)^{n}\right]+\frac{2}{n \pi}\left[1-(-1)^{n}\right] \\
= & \frac{1}{n \pi}\left[1-(-1)^{n}\right] \sum_{0}\left[\frac{1}{n} \frac{2}{(n \pi)^{2}}\left[(-1)^{n}-1\right] \cos \left(\frac{n \pi x}{2}\right)\right. \\
\therefore f(x) & =1+\sum_{n=1}^{\infty} \frac{1}{n \pi}\left[1-(-1)^{n}\right] \sin \left(\frac{n \pi x}{2}\right)
\end{aligned}
$$

(Coecterversere:

Cenvergence
Thun2: Pointwise Cgee of Fourier Sevies
of $f+f^{\prime}$ are piecenise conctinuous on $[-L, L]$, then for any x in $(-L, L)$

$$
\begin{gather*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi_{n}}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right) \\
=\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right] \tag{6}
\end{gather*}
$$

where the $a_{n}+b_{x}$ values are given by the Culer Formulas (1) (15). For $x= \pm L$, the series converges to

$$
\frac{1}{2}\left[f\left(-L^{+}\right)+f\left(L^{-}\right)\right] .
$$

Is To which fu dousthe fonier serieo for

$$
f(x)=\left\{\begin{array}{cc}
-1 & -\pi<x<0 \\
1 & 0<x<\pi
\end{array}\right.
$$

couverge?

