Math 319, some code to compute Fourier Seres coefficients and then plot the Fourier Series
[> with(plots):
Consider the following piecewise continuous function defined on the interval $0<x<2$:
$>f B:=x \rightarrow$ piecewise(And $(0 \leq x, x<1), 2 \cdot x, \operatorname{And}(1 \leq x, x<2), 2, \operatorname{Or}(x<0, x$
$\geq 2), 0$);

$$
f B:=x \mapsto\left\{\begin{array}{cl}
2 \cdot x & 0 \leq x \wedge x<1 \tag{1}\\
2 & 1 \leq x \wedge x<2 \\
0 & x<0 \vee 2 \leq x
\end{array}\right.
$$

To find the Fourier Series representation of this function, we need to extend it. There are several options.

Fourier Cosine Series
[We can plot part of the even extension of $\mathrm{fB}(\mathrm{x})$:
$[>\operatorname{plot}([f B(x)+f B(-x)], x=-6 . .6, y=0 . .2 .5$, discont $=$ true, colour $=$ black, thickness $=2$);

The Fourier Series approximation of the even extension of $\mathrm{fB}(\mathrm{x})$ is the Fourier Cosine Series. We compute the coefficients:
$[>a 0:=\operatorname{simplify}(\operatorname{expand}(\operatorname{int}(2 \cdot x, x=0 . .1)+\operatorname{int}(2, x=1 . .2)))$; $a 0:=3$
$\overline{=}$ an $:=\operatorname{simplify}\left(\right.$ expand $\left(\operatorname{int}\left(2 \cdot x \cdot \cos \left(\frac{n \cdot \operatorname{Pi} \cdot x}{2}\right), x=0 . .1\right)+\operatorname{int}\left(2 \cdot \cos \left(\frac{n \cdot \operatorname{Pi} \cdot x}{2}\right), x\right.\right.$ $=1 . .2))$);

$$
\begin{align*}
& \text { an }:=\frac{8 n \pi \sin \left(\frac{n \pi}{2}\right) \cos \left(\frac{n \pi}{2}\right)+8 \cos \left(\frac{n \pi}{2}\right)-8}{n^{2} \pi^{2}} \tag{3}\\
& {\left[>f C:=(x, n \max) \rightarrow \frac{3}{2}+\operatorname{add}\left(\left(\frac{8}{(n \cdot P i)^{2}} \cdot\left(\cos \left(\frac{n \cdot \mathrm{Pi}}{2}\right)-1\right)\right) \cdot \cos \left(\frac{n \cdot \mathrm{Pi} \cdot x}{2}\right), n=1\right.\right.} \\
& \text {..nmax); } \\
& \text { Warning, (in fc) 'n` is implicitly declared local } \\
& f_{C}:=(x, \operatorname{mmax}) \mapsto \frac{3}{2}+\operatorname{add}\left(\frac{8 \cdot\left(\cos \left(\frac{n \cdot \pi}{2}\right)-1\right) \cdot \cos \left(\frac{n \cdot \pi \cdot x}{2}\right)}{n^{2} \cdot \pi^{2}}, n=1 . . n \max \right) \tag{4}\\
& \left\lceil f_{c}:=(x, n \max) \rightarrow \frac{3}{2}+\operatorname{add}\left(\left(\frac{8}{(n \cdot P \mathrm{Pi})^{2}} \cdot\left(\cos \left(\frac{n \cdot \mathrm{Pi}}{2}\right)-1\right)\right) \cdot \cos \left(\frac{n \cdot \mathrm{Pi} \cdot x}{2}\right), n=1\right.\right. \\
& \text {..nmax }) ; \\
& \text { [}
\end{align*}
$$

$>\operatorname{plot}([f c(x, 3), f c(x, 5), f c(x, 7), f B(x)], x=-6 . .6$, colour $=[$ red, green, blue, black], thickness $=2$, discont $=$ true $)$;

We see that the fourier series is converging to the even extension of $f B(x)$, though with lots of ringing.

Fourier Sine Series
CComputing the coefficients
$>b n:=\operatorname{expand}\left(\operatorname{int}\left(2 \cdot x \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{2}\right), x=0 . .1\right)+\operatorname{int}\left(2 \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{2}\right), x=1\right.\right.$
..2));

$$
\begin{equation*}
b n:=\frac{8 \sin \left(\frac{n \pi}{2}\right)}{n^{2} \pi^{2}}-\frac{4 \cos (n \pi)}{n \pi} \tag{5}
\end{equation*}
$$

Using the fact that n is an integer, we can simplify the coefficients above, and obtain the fourier sine series:
$\left[>f s:=(x, n \max) \rightarrow \operatorname{add}\left(\left(\frac{8}{(n \cdot \mathrm{Pi})^{2}} \cdot \sin \left(\frac{n \cdot \mathrm{Pi}}{2}\right)-\frac{4}{n \cdot \mathrm{Pi}} \cdot(-1)^{n}\right) \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{2}\right), n=1\right.\right.$..nmax);
Warning. (in fs) ‘n` is implicitly declared local

$$
\begin{equation*}
f s:=(x, n \max) \mapsto \operatorname{add}\left(\left(\frac{8 \cdot \sin \left(\frac{n \cdot \pi}{2}\right)}{n^{2} \cdot \pi^{2}}-\frac{4 \cdot(-1)^{n}}{n \cdot \pi}\right) \cdot \sin \left(\frac{n \cdot \pi \cdot x}{2}\right), n=1 . . n \max \right) \tag{6}
\end{equation*}
$$

$[>\operatorname{plot}([f s(x, 3), f s(x, 5), f s(x, 7), f B(x)], x=-6 . .6$, colour $=[r e d$, green, blue, black], thickness $=2$, discont $=$ true);

We see that the fourier series is converging to the odd extension of $f B(x)$, though with lots of ringing.

Other extensions are possible. These two, the even and odd extensions, are the ones that lend themselves most easily to a Fourier Series representation, as they are composed of just cosines (in the odd extension case) and just sines (in the even extension case). Other extensions would lead to a mix of cosine and sine functions in the series.

