[> with(plots): with(LinearAlgebra) :
[Solution to part 1(b).
$\left[>f:=(x, y) \rightarrow\left\langle 2 \cdot \sin \left(\frac{\mathrm{Pi} \cdot x}{3}\right), \frac{y}{2}\right\rangle ;\right.$

$$
\begin{equation*}
f:=(x, y) \rightarrow\left\langle 2 \sin \left(\frac{1}{3} \pi x\right), \frac{1}{2} y\right\rangle \tag{1}
\end{equation*}
$$

By analytically solving for the steady states (see the handwritten solutions for assignment \#2), we see that the steady state value of y is 0 . To find the steady state values of x, we need to determine when the function
$>f p:=x \rightarrow 2 \cdot \sin \left(\frac{\mathrm{Pi} \cdot x}{3}\right)$;

$$
\begin{equation*}
f p:=x \rightarrow 2 \sin \left(\frac{1}{3} \pi x\right) \tag{2}
\end{equation*}
$$

[is equal to x. Plot $f p(x)$ and x in order to determine where the intersections are.
$>\operatorname{plot}([x, f p(x)], x=-3 . .3)$

We see that one of the steady state values of x is 0 . The other two steady state values are near -2 and 2. We use this information to guide our choice of starting points for the root-solving routine.
$>f$ solve $(f p(x)=x, x=-2 . .-1)$; fsolve $(f p(x)=x, x=1 . .2)$;

- 1.859747547
1.859747547

So the fixed points are $(0,0),(-1.86,0)$, and $(1.86,0)$. Now we look at the image of the unit circle under two iterations of the map f at these three steady states.
[We begin by looking at the image of a small circle centred at the origin.
$>$ x0vec $:=\langle 0.1 \cdot \cos (t), 0.1 \cdot \sin (t)\rangle$;

$$
x 0 v e c:=\left[\begin{array}{l}
0.1 \cos (t) \tag{4}\\
0.1 \sin (t)
\end{array}\right]
$$

$>$ x1vec $:=f(x 0 \operatorname{vec}[1]$, x0vec $[2])$;

$$
\text { x1vec }:=\left[\begin{array}{c}
2 \sin (0.03333333333 \pi \cos (t)) \tag{5}\\
0.05000000000 \sin (t)
\end{array}\right]
$$

$$
\leq>\text { x2vec }:=f(x 1 \operatorname{vec}[1], x 1 v e c[2]) ;\left[\begin{array}{c}
2 \sin \left(\frac{2}{3} \pi \sin (0.03333333333 \pi \cos (t))\right) \\
\qquad 0.02500000000 \sin (t) \tag{6}
\end{array}\right]
$$

$>\operatorname{plot}([[x 0 v e c[1], x 0 v e c[2], t=0 . .2 \cdot \operatorname{Pi}],[x 1 v e c[1], x 1 v e c[2], t=0 . .2 \cdot \operatorname{Pi}],[x 2 v e c[1]$, $x 2 v e c[2], t=0 . .2 \cdot \mathrm{Pi}]]$, scaling $=$ constrained);

The colour ordering is: red $=$ initial circle, blue $=$ first iterate, green $=$ second iterate. This figure shows that the initial circle is transformed into ellipses that elongate along the x axis and shrink along the y axis. So the steady state at $(0,0)$ is a saddle. [Now we look at the steady state at $(-1.86,0)$.
$>$ x $0 v e c:=\langle 0.1 \cdot \cos (t)-1.86,0.1 \cdot \sin (t)\rangle$;

$$
\text { x0vec }:=\left[\begin{array}{c}
0.1 \cos (t)-1.86 \tag{7}\\
0.1 \sin (t)
\end{array}\right]
$$

$>$ x1vec $:=f(x 0 \operatorname{vec}[1], x 0 \operatorname{vec}[2]) ; x 2 v e c:=f(x 1 v e c[1], x 1 v e c[2]) ;$

$$
\text { x1vec } \left.\left.:=\left[\begin{array}{c}
2 \sin \left(\frac{1}{3} \pi(0.1 \cos (t)-1.86)\right) \\
0.05000000000 \sin (t) \tag{8}
\end{array}\right]\right)\right]
$$

$[>\operatorname{plot}([[x 0 v e c[1], x 0 v e c[2], t=0 . .2 \cdot \operatorname{Pi}],[x 1 \operatorname{vec}[1], x 1 v e c[2], t=0 . .2 \cdot \operatorname{Pi}],[x 2 v e c[1]$, $x 2 v e c[2], t=0 . .2 \cdot \mathrm{Pi}]]$, scaling $=$ constrained);

Here we see that the initial circle (red) becomes successively smaller in all directions (albeit at different rates) under forward iterations of the map. So the steady state at $(-1.86,0)$ is a sink.
Now we consider the last steady state at $(1.86,0)$.
$>$ x0vec $:=\langle 0.1 \cdot \cos (t)+1.86,0.1 \cdot \sin (t)\rangle$

$$
\text { x0vec }:=\left[\begin{array}{c}
0.1 \cos (t)+1.86 \tag{9}\\
0.1 \sin (t)
\end{array}\right]
$$

[> x1vec $:=f(x 0 \operatorname{vec}[1], x 0 v e c[2]) ; x 2 v e c:=f(x 1 \operatorname{vec}[1], x 1 \operatorname{vec}[2]) ;$

$$
\text { x1vec } \left.\left.:=\left[\begin{array}{c}
2 \sin \left(\frac{1}{3} \pi(0.1 \cos (t)+1.86)\right) \\
0.05000000000 \sin (t)
\end{array}\right]\right)\right]
$$

[> plot $([[x 0 \operatorname{vec}[1], x 0 \operatorname{vec}[2], t=0 . .2 \cdot \operatorname{Pi}],[x 1 \operatorname{vec}[1], x 1 \operatorname{vec}[2], t=0 . .2 \cdot \operatorname{Pi}],[x 2 v e c[1]$, $x 2 v e c[2], t=0 . .2 \cdot \mathrm{Pi}]]$, scaling $=$ constrained);

[This result is the same as the one obtained for the mirror steady state at $(-1.86,0)$. We thus conclude that the steady state at $(1.86,0)$ is a sink.
[Solution to part 2(ii).
[Problem 2(a)
$\left[>A:=\left\langle\langle 2,2\rangle \left\lvert\,\left\langle\frac{1}{2},-\frac{1}{2}\right\rangle\right.\right\rangle ;\right.$

$$
A:=\left[\begin{array}{cc}
2 & \frac{1}{2} \tag{11}\\
2 & -\frac{1}{2}
\end{array}\right]
$$

$\overline{\text { L }}>$ vevec $:=\langle\cos (t), \sin (t)\rangle ;$

$$
\text { x0vec }:=\left[\begin{array}{c}
\cos (t) \tag{12}\\
\sin (t)
\end{array}\right]
$$

[> x1vec $:=$ Ax0vec; x2vec $:=A x 1 v e c ;$

$$
\begin{aligned}
& \text { x1vec }:=\left[\begin{array}{l}
2 \cos (t)+\frac{1}{2} \sin (t) \\
2 \cos (t)-\frac{1}{2} \sin (t)
\end{array}\right] \\
& x 2 \text { vec }:=\left[\begin{array}{l}
5 \cos (t)+\frac{3}{4} \sin (t) \\
3 \cos (t)+\frac{5}{4} \sin (t)
\end{array}\right]
\end{aligned}
$$

[> plot $([[x 0 \operatorname{vec}[1], x 0 \operatorname{vec}[2], t=0 . .2 \cdot \mathrm{Pi}],[x 1 \operatorname{vec}[1], x 1 \operatorname{vec}[2], t=0 . .2 \cdot \mathrm{Pi}],[x 2 \operatorname{vec}[1]$, $x 2 v e c[2], t=0 . .2 \cdot \mathrm{Pi}]]$, scaling $=$ constrained $)$

WWe see that the unit circle is being stretched in one direction (approximately along the line through $(0,0)$ with slope 1), and shrunk in the other. So the steady state at $(0,0)$ is a saddle.
We note that the eigenvalues of the matrix A are
$>$ Eigenvalues (A);

$$
\left[\begin{array}{l}
\frac{3}{4}+\frac{1}{4} \sqrt{41} \tag{14}\\
\frac{3}{4}-\frac{1}{4} \sqrt{41}
\end{array}\right]
$$

These eigenvalues are both real, one larger than one and the other less than one.
This confirms our classisfication as correct.
Problem 2(b)
$>A:=\langle\langle 2,-2\rangle \mid\langle 1,2\rangle\rangle$;

$$
A:=\left[\begin{array}{rr}
2 & 1 \tag{15}\\
-2 & 2
\end{array}\right]
$$

[> x1vec $:=A x 0 v e c ;$ x2vec $:=A x 1 v e c ;$

$$
\begin{align*}
& \text { x1vec }:=\left[\begin{array}{c}
2 \cos (t)+\sin (t) \\
-2 \cos (t)+2 \sin (t)
\end{array}\right] \\
& \text { x2vec }:=\left[\begin{array}{c}
2 \cos (t)+4 \sin (t) \\
-8 \cos (t)+2 \sin (t)
\end{array}\right] \tag{16}
\end{align*}
$$

[$>\operatorname{plot}([[x 0 \operatorname{vec}[1], x 0 \operatorname{vec}[2], t=0 . .2 \cdot \operatorname{Pi}],[x 1 \operatorname{vec}[1], x 1 \operatorname{vec}[2], t=0 . .2 \cdot \mathrm{Pi}],[x 2 \operatorname{vec}[1]$, $x 2 v e c[2], t=0 . .2 \cdot \mathrm{Pi}]]$, scaling $=$ constrained $)$

[In this case we see that the initial circle is growing in all directions, and so the origin is a source. The eigenvalues of this matrix are
> Eigenvalues (A);

$$
\left[\begin{array}{l}
2+\mathrm{I} \sqrt{2} \tag{17}\\
2-\mathrm{I} \sqrt{2}
\end{array}\right]
$$

Ewith magnitude
> |Eigenvalues $(A) \mid$;

$$
\left[\begin{array}{c}
\sqrt{6} \tag{18}\\
\sqrt{6}
\end{array}\right]
$$

The eigenvalues thus have magnitude larger than 1 , confirming that the origin is a source. The eigenvalues are complex however, and so the map expands and rotates the ellipse at each iteration.
[>

