Math 339-Dynamical Systems Assignment \# 3 due Wed September 30th, 12:30pm

Instructions: You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

1. Find all the fixed points of the three-dimensional map

$$
f(x, y, z)=\left(x^{2} y, y^{4}, \frac{x z}{2}+y\right)
$$

and determine their stability.
2. Consider the map

$$
f(x, y)=\left(a x-b x^{2}, x^{2}+2 y\right)
$$

where a and b are real numbers.
(a) For $a=4$ and $b=1$, verify that

$$
\left\{\left(\frac{5+\sqrt{5}}{2},-\frac{15}{2}-\frac{5 \sqrt{5}}{6}\right),\left(\frac{5-\sqrt{5}}{2},-\frac{15}{2}+\frac{5 \sqrt{5}}{6}\right)\right\}
$$

is a period- 2 orbit, and determine its stability.
(b) For $a=1 / 3$ and $b=0$, show that $(0,0)$ is a saddle fixed point.
3. Consider the map $f(x, y)=\left(a x, b x^{3}+c y\right)$.
(a) Show that $(0,0)$ is a saddle fixed point for either $|a|<1 \&|c|>1$ or $|a|>1 \&|c|<1$.
(b) Find the inverse $\operatorname{map} f^{-1}$.
(c) Show that the set $S=\left\{\left(t, q t^{3}\right): t \in \Re\right\}$, where $q=b /\left(a^{3}-c\right)$ is invariant.
(d) Determine the stable and unstable manifolds for each case in question 3 a .

