Math 339 - Dynamical Systems Assignment # 2 due Fri September 22nd, 4pm

Instructions: You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Sloppy or incorrect use of technical terms will lower your mark.

- 1. (taken from Exercise 1.12) Consider the map $h(x) = axe^{-x}$.
 - (a) Find the fixed points of the map h(x).
 - (b) Find out for what value of a the positive steady state x^* is a superstable fixed point x^* , that is, $h'(x^*) = 0$. Denote by a_{ss} this value of a.
 - (c) Investigate the orbit starting at $x_0 = 0.1$ for $a = a_{ss}$ using Maple. How does the behaviour of the orbit change if a is increased by 50%?
 - (d) What is the range of $a \ge 1$ for which the steady state x^* is a sink?
 - (e) As a increases through the range identified above, it eventually reaches a critical value a_c above which the orbits approach a two-cycles. Verify this result. Plot the second order map and identify the steady states associated with the fixed point and with the two-cycle.
 - (f) Use Maple to explore the behaviour of solutions as a increases above a_c . Use Maple to produce a bifurcation plot. Explain what you observe.
- 2. Exercise 1.14
- 3. Exercise 2.5