2017
Math 339 - Assignment \#3
Solutions

1. Exercise 2.6

$$
f(x, y)=\left(\sin \left(\frac{\pi}{3} x\right), \frac{y}{2}\right)
$$

fixed $p$ ts:

$$
\left\{\begin{array}{l}
x^{*}=\sin \left(\frac{\pi}{3} x^{k}\right) \\
y^{k}=\frac{y^{k}}{2}
\end{array}\right.
$$



We see that here are three fixed points:
$(0,0) ;(a, 0) ;(-a, 0)$ where $a=\frac{1}{2}$ (foin dusing Maple).
stability:

$$
\begin{aligned}
& D f=\left[\begin{array}{cc}
\frac{\pi}{3} \cos \left(\frac{\pi}{3} x\right) & 0 \\
0 & \frac{1}{2}
\end{array}\right] \\
& \therefore \lambda_{1}=\frac{\pi}{3} \cos \left(\frac{\pi}{3} x\right), \quad \lambda_{2}=\frac{1}{2}
\end{aligned}
$$

So stability is determined by $\lambda_{1}$.
$\operatorname{At}(0,0)$
$\lambda_{1}=\frac{\pi}{3}$ a no the steady state at the origin is unstable (Saddle)

$$
\frac{\operatorname{At}\left( \pm a_{1} 0\right)=\left( \pm \frac{1}{2}, 0\right)}{\lambda_{1}=\frac{\pi}{3} \cos \left( \pm \frac{\pi}{3} a\right)=\frac{\pi}{3} \cos \left(-\frac{\pi}{6}\right)=\frac{\pi}{3} \frac{\sqrt{3}}{2}=0.91}
$$

$\therefore$ The other two steady states are stable.

Basins of Attraction


- The basin of attraction for $\left(\frac{1}{2}, 0\right)$ is $\{(x, y) \mid x>0, y \in \mathbb{R}\}$

$$
\left(-\frac{1}{2}, 0\right) \text { is }\{(x, y) \mid x<0, y \in \mathbb{R}\}
$$

(Maple work on next $p$ )

What about the rest of the real line?


The basin of attraction of $(0,0)$ is $\{(x, y) \mid x=3 n, n \in \mathbb{Z}, y \in \mathbb{R}\}$

$$
\begin{aligned}
& \text {. ". ". " }\left(\frac{1}{2}, 0\right) \text { is }\{(x, y) \mid 60<x<6 n+3, n \in \mathbb{Z} \text {, } \\
& y \in \mathbb{R}\} \\
& \text { " }\left(-\frac{1}{2}, 0\right) \text { is }\{(x, y) \mid 6 n+3<x<6(x+1), n \in \mathbb{Z} \\
& y \in \mathbb{R}\}
\end{aligned}
$$

## [> restart:

[> with(plots) :

## Calculations for 1. (Exercise 2.6)

$>\mathrm{F} 1:=\mathrm{x} \rightarrow \sin \left(\frac{\mathrm{Pi}}{3} \cdot x\right) ;$

$$
\begin{equation*}
F 1:=x \rightarrow \sin \left(\frac{1}{3} \pi x\right) \tag{1}
\end{equation*}
$$

$\left[>\operatorname{plot}\left([F 1(x), x], x=-\frac{\mathrm{Pi}}{4} . . \frac{\mathrm{Pi}}{4}\right.\right.$, colour $=[$ red, black $\left.]\right)$;

$>\operatorname{fsolve}(F 1(x)-x=0)$;
0.
$>\operatorname{fsolve}\left(F 1(x)-x=0, x=\frac{\mathrm{Pi}}{8} . . \frac{\mathrm{Pi}}{4}\right)$;
0.5000000000
$>\operatorname{evalf}\left(\frac{\mathrm{Pi}}{3} \cdot \frac{\operatorname{sqrt}(3)}{2}\right)$;
0.9068996827
2. Exercise 2.7

Herren map of $h=0.3$ :

$$
f(x, y)=\left(a-x^{2}+0.3 y, x\right), a>0
$$

a) fixed pts:

$$
\left\{\begin{array}{l}
x^{*}=a-x^{*^{2}}+0.3 y^{*}  \tag{1}\\
y^{*}=x^{*}
\end{array}\right.
$$

Combining (1) + (2) we obtain

$$
\begin{aligned}
& x^{*}=a-x^{*^{2}}+0.3 x^{*} \Leftrightarrow \frac{1}{1} \\
& \text { y } \Leftrightarrow x^{*^{2}}+0.7 x^{*}-a=0 \\
& \Leftrightarrow x^{*}=\frac{-0.7 \pm \sqrt{0.49+4 a}}{2}=p+,-
\end{aligned}
$$

The two fixed points are $\left(p_{+}, p_{+}\right) ;\left(p_{-}, p_{-}\right)$.
stability

$$
\begin{gathered}
D f \mid \\
*
\end{gathered}=\left[\begin{array}{cc}
-2 x^{*} & 0.3 \\
1 & 0
\end{array}\right]
$$

eigenvalues:

$$
\begin{aligned}
& \left(-2 x^{*}-\lambda\right)(-\lambda)-0.3=0 \operatorname{css} / 1 / \\
& \text { III } \cos \lambda^{2}+2 x^{*} \lambda-0.3=0 \\
& \text { (is } \lambda=-x^{*} \pm \sqrt{x^{*^{2}}+0.3}
\end{aligned}
$$

We see that for $x^{*}>0$

$$
\lambda_{+}=-x^{*}+\sqrt{x^{*^{2}}+0.3} \simeq \sqrt{0.3}<1
$$

Thus, stability is determined by $\lambda_{1}$. For $x^{*}<0$, stability is determined by $\lambda_{+}$.

Consider $x^{*}>0: x^{*}=p+$

$$
\begin{aligned}
\lambda_{-}= & 0.35-\sqrt{0.125+a} \\
& -\sqrt{(-0.35+\sqrt{0.125+a})^{2}+0.3}
\end{aligned}
$$

Consider $x^{*}<0: x^{*}=p-$

$$
\begin{aligned}
& \text { rider } x^{*}<0: x^{*}=p- \\
& \lambda_{+}=0.35+\sqrt{0.125+a}+\sqrt{(-0.35-\sqrt{0.125+a})^{2}+0 . \%}
\end{aligned}
$$

## Calculations for 2 (Exercise 2.7)

(a) Finding the range of $a$ values for which the map has one sink fixed point and one saddle fixed point.

$$
\begin{align*}
& >\text { xs_m }:=-0.35-\operatorname{sqrt}(0.1225+a) ; x s_{-} p:=-0.35+\operatorname{sqrt}(0.1225+a) ; \\
& x s_{-} m:=-0.35-\sqrt{0.1225+a} \\
& =x s_{-} p:=-0.35+\sqrt{0.1225+a} \tag{5}
\end{align*}
$$

> plot([xs_m(a), xs_p(a)], $a=-0.2 . .1$, colour $=[$ blue, green], gridlines $)$;


We see that $x^{*}+$ is positive (green curve), and $x^{*}$ - is negative (blue curve) as expected.
$>$ lambda_m $:=a \rightarrow 0.35-\operatorname{sqrt}(0.1225+a)-\operatorname{sqrt}\left((-0.35+\operatorname{sqrt}(0.1225+a))^{2}\right.$ $+0.3)$;
lambda_m : $=a \rightarrow 0.35-\sqrt{0.1225+a}-\sqrt{(-0.35+\sqrt{0.1225+a})^{2}+0.3}$
$>$ lambda_p $:=a \rightarrow 0.35+\operatorname{sqrt}(0.1225+a)+\operatorname{sqrt}\left((-0.35-\operatorname{sqrt}(0.1225+a))^{2}\right.$ $+0.3)$;
lambda_p $:=a \rightarrow 0.35+\sqrt{0.1225+a}+\sqrt{(-0.35-\sqrt{0.1225+a})^{2}+0.3}$
$>\operatorname{plot}\left(\left[\operatorname{lambda\_ m}(a)\right.\right.$, lambda_p $\left.(a), 1,-1\right], a=0 . .1$, colour $=[$ blue, green, black, black], gridlines);

$\square$
We see that lambda_m is initially less than 1 in magnitude, and becomes larger than 1 in magnitude for $\bar{a}$ a little less than 0.4. The other eigenvalue is always larger than 1 in magnitude. This result means that the negative steady state is a saddle for all $a>0$, and the positive steady state is a stable node for $0<a<c$, where $c$ is a critical value close to 0.4.
[We can find $c$ numerically:
$>c:=$ fsolve(lambda_m $(a)=-1$ );

$$
\begin{equation*}
c:=0.3675000000 \tag{8}
\end{equation*}
$$

Thus, the map has one sink fixed point and one saddle fixed point for - $0.1225<a<0.3675$.

$$
\begin{aligned}
& H^{2}(x, y)=\left(a-\left(a-x^{2}+0.3 y\right)^{2}+0.3 x, a-x^{2}+0.3 y\right) \\
&=\left(a-a^{2}+2 a x^{2}-0.6 a y-x^{4}+0.6 x^{2} y-0.09 y^{2}+0.3 x, a-x^{2}+0.3 y\right) \\
& \text { Fived sts: }
\end{aligned}
$$

Fixed pts:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{*}=a-\left(a-x^{*^{2}}+0.3 y^{*}\right)^{2}+0.3 x^{*} \\
y^{*}=a-x^{*^{2}}+0,3 y^{*}
\end{array}\right. \text { sos (111/ } \\
& \text { (III } \operatorname{sos}\left\{\begin{array}{l}
x^{*}=a-y^{*^{2}}+0.3 x^{*} \\
y^{*}=a-x^{*^{2}}+0.3 y^{*}
\end{array}\right. \\
& \& \delta\left\{\begin{array}{l}
0.7 x^{*}=a-y^{*^{2}} \\
0.7 y^{*}=a-x^{* 2}
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
x^{*}=\frac{1}{0.7}\left(a-\frac{\left(a-x^{*^{2}}\right)^{2}}{0.49}\right) \ldots(4) \\
y^{*}=\frac{a-x^{*^{2}}}{0.7} \ldots(5)
\end{array}\right.
\end{aligned}
$$

Worlung with (4) we obstain

$$
\begin{aligned}
0.7 x^{*} & =a-\frac{\left(a-x^{*}\right)^{2}}{0.49} \text { sis 伴 } \\
& \Leftrightarrow 1 y<0.343 x^{*}=0.49 a-\left(a-x^{*}\right)^{2} \\
& \Leftrightarrow 0.343 x^{*}=0.49 a-\left[a^{2}-2 a x^{*^{2}}+x^{* *}\right] \cos / v
\end{aligned}
$$

(v) $0.343 x^{*}=0.49 a-a^{2}+2 a x^{*^{2}}-x^{* 4}$

H $x^{* 4}-2 a x^{*^{2}}+0.343 x^{*}-0.49 a+a^{2}=0 \cdots(6)$
We know that the fired pts of $H$ are also fixed pts of $H^{2}$; and so (6) should be factorable by (3):

$$
\begin{aligned}
& x^{x^{2}}+0.7 x^{*}-a \frac{\left.x^{*^{2}}-0.7 x^{*}+10.49-a\right)}{x^{* 4}+0 x^{* 3}-2 a x^{*^{2}}+0.343 x^{*}-0.49 a+a^{2}} \\
&-7 x^{*^{4}}+0.7 x^{*^{3}}-a x^{*^{2}} \\
&-0.7 x^{*^{3}}-a x^{*^{2}}+0.343 x^{*} \\
& \rightarrow \frac{-0.7 x^{4^{4}}-0.49 x^{*^{2}}+0.7 a x^{*}}{(0.49-a) x^{* 2}+(0.343-0.7 a) x^{*}-0.49 a+a^{2}} \\
&(0.49-a) x^{*^{2}}+0.7(0.49-a) x^{*}-a(0.49-a)
\end{aligned}
$$

$\therefore$-(6) is factored as

$$
\underbrace{\begin{array}{c}
\text { the rots of this factor } \\
\text { are the period -2 }
\end{array}}_{\substack{\text { The orts of this } \\
\left(x^{\left.*^{2}+0.7 x^{*}-a\right)}\right.}}
$$

factor are the fixed pints of H.
are the period. 2 fixed points of $H$.

Soling the second factor of $(7)$ werstain

$$
\begin{align*}
& \text { y the second factor of (7) we obtain }  \tag{8}\\
& x^{*^{2}-0.7 x^{*}+(0.49-a)=0} \Leftrightarrow x^{*}=0.35 \pm \sqrt{0.1225+a-0.49} \\
& \qquad x_{12}^{*}=0.35 \pm \sqrt{a-0.3675} \ldots
\end{align*}
$$

Thus, we must have $a \geqslant 0.3675$ for this two-cycle to exist, and $a=0.3675$ is the critical value at which the'sinkixed point of H (period 1 fixed point) becomes unstable (found in part (a))
The stability of the two-cycle is determined by the eigenvalues of

$$
\begin{aligned}
\left(D H|D H|_{\vec{x}_{1}^{*}}^{\mid D}\right. & =\left[\begin{array}{cc}
-2 x_{1}^{*} & 0.3 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-2 x_{2}^{*} & 0.3 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 x_{1}^{*} x_{2}^{*}+0.3 & -0.6 x_{1}^{*} \\
-2 x_{2}^{*} & 0.3
\end{array}\right] \\
& =\left[\begin{array}{cc}
2.26-4 a & -0.210-0.6 \sqrt{a-0.3675} \\
-0.7+2 \sqrt{a-0.3675} & 0.3
\end{array}\right]
\end{aligned}
$$

(umbshoure on Maple)

## (b) Finding the range of a for which the map has a period-two sink.

We expect the period-two sink to emerge when the sink fixed point becomes unstable, that is, at $a=0.365$. We begin by forming the second iterate map.
[> $H:=(x, y) \rightarrow\left(a-x^{2}+0.3 \cdot y, x\right) ; H 2:=(x, y) \rightarrow H(H(x, y)) ;$

$$
\begin{gather*}
H:=(x, y) \rightarrow\left(a-x^{2}+0.3 y, x\right) \\
H 2:=(x, y) \rightarrow H(H(x, y)) \tag{9}
\end{gather*}
$$

$>\operatorname{simplify}(H 2(x, y)[1])$;

$$
\begin{equation*}
a-a^{2}+2 . a x^{2}-0.6 a y-x^{4}+0.6 x^{2} y-0.09 y^{2}+0.3 x \tag{10}
\end{equation*}
$$

Using the results above, we found the $x$-value of the period-2 fixed points to be
$>x s_{-} p 2:=0.35+\operatorname{sqrt}(a-0.3675) ; x s_{-} m 2:=0.35-\operatorname{sqrt}(a-0.3675) ;$

$$
\begin{align*}
x s_{-} p 2 & :=0.35+\sqrt{a-0.3675} \\
x s_{-} m 2 & :=0.35-\sqrt{a-0.3675} \tag{11}
\end{align*}
$$

Stability of the two-cycle is determined by the Jacobian of the map H evaluated at each of the points in the two-cycle.
[> with(VectorCalculus): with(LinearAlgebra):
$>J:=\operatorname{Jacobian}([H(x, y)[1], H(x, y)[2]],[x, y])$;

$$
J:=\left[\begin{array}{cc}
-2 x & 0.3  \tag{12}\\
1 & 0
\end{array}\right]
$$

[> $A:=\operatorname{simplify}\left(\operatorname{expand}\left(\operatorname{Multiply}\left(\operatorname{subs}\left(x=x s_{-} p 2, J\right), \operatorname{subs}\left(x=x s_{-} m 2, J\right)\right)\right)\right)$;

$$
A:=\left[\begin{array}{cc}
2.2600-4 . a & -0.210-0.6 \sqrt{a-0.3675}  \tag{13}\\
-0.70+2 \sqrt{a-0.3675} & 0.3
\end{array}\right]
$$

$\bar{T} \quad E A:=\operatorname{Eigenvalues}(A)$;
$E A:=\left[\begin{array}{l}-2 . a+1.280000000+0.02000000000 \sqrt{10000 . a^{2}-12800 . a+3871 .} \\ -2 . a+1.280000000-0.02000000000 \sqrt{10000 . a^{2}-12800 . a+3871 .}\end{array}\right]$
[ $>E A 1:=\operatorname{unapply}(E A[1], a) ; E A 2:=$ unapply $(E A[2], a)$;
$E A 1:=a \rightarrow-2 . a+1.280000000$

$$
\begin{equation*}
+0.02000000000 \sqrt{10000 . a^{2}-12800 . a+3871 .} \tag{15}
\end{equation*}
$$

$E A 2:=a \rightarrow-2 . a+1.280000000$

$$
-0.02000000000 \sqrt{10000 . a^{2}-12800 . a+3871}
$$

$>\operatorname{plot}([E A 1(a), \operatorname{EA2}(a), 1,-1], a=0.3675 . .1$, colour $=[$ blue, green, black, black], gridlines);


We see that only the second eigenvalue (the one in green) becomes larger than 1 in magnitude by crossing the -1 line. Solving for this intersection point we find
> fsolve $(\operatorname{EA2}(a)=-1)$;

$$
\begin{equation*}
0.9125000000 \tag{16}
\end{equation*}
$$

Thus, the two-cycle becomes unstable at $a=0.9125$, that is, the map has a period- 2 sink for $0.3675<a<0.9125$.
3. (T2.9) with

$$
f(x, y)=\left(\frac{x}{3}, y-\frac{2}{3} x^{2}\right)
$$

a) fixed pts

$$
\left\{\begin{array} { l } 
{ x ^ { * } = \frac { x ^ { * } } { 3 } } \\
{ y ^ { * } = y ^ { * } - \frac { 2 } { 3 } x ^ { * ^ { 2 } } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x^{*}=0 \\
y^{*}=y^{*}
\end{array}\right.\right.
$$

$\therefore$ Every point on the $y$ axis is a fixed $p t$.

Find $f^{-1}$ :

$$
\begin{aligned}
&\left\{\begin{array} { l } 
{ x _ { n + 1 } = \frac { x _ { n } } { 3 } } \\
{ y _ { n + 1 } = y _ { n } - \frac { 2 } { 3 } x _ { n } ^ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x_{n}=3 x_{n+1} \\
y_{n}=y_{n+1}+\frac{2}{3} x_{n}^{2}
\end{array}\right.\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
x_{n}=3 x_{n+1} \\
y_{n}=y_{n+1}+\frac{2}{3}\left(3 x_{n+1}\right)^{2}
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
x_{n}=3 x_{n+1} \\
y_{n}=y_{n+1}+6 x_{n+1}^{2}
\end{array}\right.
\end{aligned}
$$

$$
\therefore f^{-1}(x, y)=\left(3 x, y+6 x^{2}\right)
$$

b) Show that

$$
S=\left\{\left(x, r x^{2}\right): x \in \mathbb{R}\right\}
$$

is invaniant, for somer, for the map $f$.

$$
f\left(x, r x^{2}\right)=\left(\frac{x}{3}, r x^{2}-\frac{2}{3} x^{2}\right)=\left(\frac{x}{3},\left(r-\frac{2}{3}\right) x^{2}\right)
$$

For the set to be invariant, we reguive

$$
\begin{aligned}
& \left(r-\frac{2}{3}\right) x^{2}=r\left(\frac{x}{3}\right)^{2} \& r x^{2}-\frac{2}{3} x^{2}=r \frac{x^{2}}{9} \text { \&s /NI } \\
& \text { KIly \&r } r-\frac{2}{3}=\frac{r}{9} \text { \&s } 9 r-6=r \Leftrightarrow 8 r-6=0 \\
& \text { \&s } r=\frac{6}{8}=\frac{3}{4}
\end{aligned}
$$

Now checle for invaniance in $f^{-1}$ :

$$
\begin{aligned}
f^{-1}\left(x, \frac{3}{4} x^{2}\right) & =\left(3 x, \frac{3}{4} x^{2}+6 x^{2}\right)=\left(3 x,\left(\frac{3}{4}+6\right) x^{2}\right) \\
& =\left(3 x,\left(\frac{3+24}{4}\right) x^{2}\right)=\left(3 x, \frac{17}{4} x^{2}\right) \\
& =\left(3 x, \frac{3}{4}\left(9 x^{2}\right)\right)=\left(3 x, \frac{3}{4}(3 x)^{2}\right) \in S
\end{aligned}
$$

. Sis invanant url $f+f^{-1}$.
c) Observe that given a starting point $\left(x, r x^{2}\right)$,

$$
f\left(x, r x^{2}\right)=\left(\frac{x}{3}, \frac{1}{12} x^{2}\right)
$$

and so, $\because$ the $x$-coordinate has ben reduced by $1 / 3$ and we are still on $S$, then iteration of the map mares the starting point closer to $(0,0)$.
d) (sue Maple vole, next p)
3. Exercise T2.9 with the map $f(x, y)=\left(x / 3, y-2 / 3 x^{\wedge} 2\right)$.
[> restart: with(plots) :
$\left[>F:=(m, n) \rightarrow\left(\frac{m}{3}, n-\frac{2 \cdot m^{2}}{3}\right) ;\right.$

$$
\begin{equation*}
F:=(m, n) \rightarrow\left(\frac{1}{3} m, n-\frac{2}{3} m^{2}\right) \tag{17}
\end{equation*}
$$

[ $>$ iterations $:=10$;

$$
\begin{equation*}
\text { iterations }:=10 \tag{18}
\end{equation*}
$$

> $>$ solnum $:=0 ;$ plotlist $:=N U L L ;$

$$
\begin{equation*}
\text { solnum:= } 0 \tag{19}
\end{equation*}
$$

[ $>$ for $n 0$ from 1.8 by 0.5 to 3.8 do
for $m 0$ from -2 by 4 to 2 do
orbit $:=$ NULL:
solnum := solnum +1 ;
$x:=m 0: y:=n 0$ :
orbit $:=$ orbit, $[x, y]:$
for $j$ from 1 to iterations do
(x1, y1) :=evalf(F(x,y)):
orbit := orbit, [x1, y1]:
$x:=x 1 ; y:=y 1$;
od:
$P[$ solnum $]:=\operatorname{plot}([$ orbit $]$, colour $=$ blue, thickness $=1):$
od: od:
[Now generate lists of points for the stable manifold
> for $m 0$ from -2 by 4 to 2 do
orbit $:=$ NULL:
solnum $:=$ solnum +1 ;
$x:=m 0: y:=\frac{3 \cdot m 0^{2}}{4}:$
orbit $:=$ orbit, $[x, y]$;
for $j$ from 1 to iterations do
$(x 1, y 1):=\operatorname{evalf}(F(x, y))$ :
orbit $:=$ orbit, $[x 1, y 1]$ :
$x:=x 1 ; y:=y 1$;
od:
$P[$ solnum $]:=\operatorname{plot}([$ orbit $]$, colour $=$ black, thickness $=2):$
od:
[> plots: - display(entries(P,'nolist'));


The plot above suggests that all trajectories are parallel to the set $S$, and terminate at the vertical axis, but only those points starting on the set $S$ (in black) end up at the Lorigin.
$\mathrm{v} v$

Consider any starting point $(x, y)$ where $y-\frac{3}{4} x^{2}=\varepsilon$. Then our Maple wok egests that the set

$$
S_{\varepsilon}\left\{\left(x, r x^{2}+\varepsilon\right): x \in \mathbb{R}\right\}
$$

in invariant for the map $f$. olet'scheck this:

$$
\begin{aligned}
f(x, y)=\left(\frac{x}{3}, y-\frac{2}{3} x^{2}\right) & =\left(\frac{x}{3}, \varepsilon+\frac{3}{4} x^{2}-\frac{2}{3} x^{2}\right. \\
& =\left(\frac{x}{3}, \frac{x^{2}}{12}+\varepsilon\right)
\end{aligned}=\left(\frac{x}{3},\left(\frac{x}{3}\right)^{2} \frac{3}{4}+\varepsilon\right) \in S_{\varepsilon}
$$

$\therefore$ The only initial points) $\left(x_{0}, y_{0}\right)$ ore orbits tending to $(0,0)$ are on $S$. All other orbits tend to points on the $y$ axis, $(0, \varepsilon)$, where $\varepsilon=y_{0}-\frac{3}{4} x_{0}^{2}$.

There is no unstable manifold.

