UBC ID \#: \qquad NAME (print): \qquad

Signature: \qquad

a place of mind
 THE UNIVERSITY OF BRITISH COLUMBIA

Irving K. Barber School of Arts and Sciences

UBC Okanagan

Instructor: Rebecca Tyson Course: MATH 339
Date: Nov 17th, 2017 Time: 12:30pm Duration: 50 minutes.
This exam has 5 questions for a total of 45 points.
SPECIAL INSTRUCTIONS

- Show and explain all of your work unless the question directs otherwise. Simplify all answers.
- The use of a calculator is not permitted.
- Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, ask for extra paper.

This is a two-stage exam. You have 50 minutes to complete the exam individually, then you will hand in the tests and join your group to redo the test as a group in the remaining 30 minutes.

1. Consider the linear system

$$
\begin{align*}
& \frac{d x}{d t}=3 x-y \tag{1a}\\
& \frac{d y}{d t}=2 x+4 y \tag{1b}
\end{align*}
$$

(a) Determine the stability of the steady state at the origin.
(b) Sketch the phase plane (use nullclines).

5
2. Consider the system

$$
\begin{array}{r}
\frac{d x}{d t}=-z+\left(\frac{x^{3}}{3}-x\right), \\
\frac{d z}{d t}=x . \tag{2b}
\end{array}
$$

Show that $V(x, z)=x^{2}+z^{2}$ is a Lyapunov function for the $(0,0)$ steady state of (2) over part of the (x, z) phase plane.

3 3. What is a Hamiltonian system? What can you say about their Lyapunov functions and phase plane solution trajectories?
4. Consider the nonlinear system

$$
\begin{align*}
& \frac{d x}{d t}=\rho y x-y^{2} \tag{3a}\\
& \frac{d y}{d t}=\frac{y}{x}-\rho, \quad \rho>0 . \tag{3b}
\end{align*}
$$

Write the phase plane equation and solve it. What do the solutions of the phase plane equation represent?
5. Consider the competition system

$$
\begin{align*}
& \frac{d x}{d t}=x(4-x)-2 x y \tag{4a}\\
& \frac{d y}{d t}=y(3-y)-\alpha x y \tag{4b}
\end{align*}
$$

4 (a) Assuming that we are only interested in solutions where $x \geq 0$ and $y \geq 0$, find the four steady states.
(b) Sketch the nullclines. Label all of the intercepts and intersection points.
(c) Determine the stability of each of the four steady states. The stability of two of the steady states will depend on the value of α. Hint: The calculations for the coexistence steady state simplify if you do two things: (1) factor the common denominator out of the Jacobian and find the eigenvalues of the remaining matrix, and (2) before computing the eigenvalues, let $\eta=4 \alpha-3$ and rewrite the matrix in terms of η instead of α.
(d) Sketch the phase plane (two cases).

4 (e) Sketch the bifurcation diagram for the x-coordinate of each steady state (α is the bifurcation parameter). Since there are two steady states with $x^{*}=0$, do not include the extinction steady state in your diagram.

Question:	1	2	3	4	5	Total
Points:	8	5	3	5	24	45
Score:						

