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This exam has 5 questions for a total of 45 points.
SPECIAL INSTRUCTIONS

• Show and explain all of your work unless the question directs otherwise. Simplify all
answers.

• The use of a calculator is not permitted.

• Answer the questions in the spaces provided on the question sheets. If you run out of
room for an answer, ask for extra paper.

This is a two-stage exam. You have 50 minutes to complete the exam individually, then
you will hand in the tests and join your group to redo the test as a group in the remaining
30 minutes.

This exam consists of 4 pages including this cover page. Check to ensure that it is complete.



Math 339 (Nov 17th, 2017) Midterm #2, Individual Test

1. Consider the linear system

dx

dt
= 3x− y, (1a)

dy

dt
= 2x+ 4y. (1b)

(a)4 Determine the stability of the steady state at the origin.

(b)4 Sketch the phase plane (use nullclines).

2.5 Consider the system

dx

dt
= −z +

(
x3

3
− x

)
, (2a)

dz

dt
= x. (2b)

Show that V (x, z) = x2 + z2 is a Lyapunov function for the (0,0) steady state of (2)
over part of the (x, z) phase plane.

3.3 What is a Hamiltonian system? What can you say about their Lyapunov functions and
phase plane solution trajectories?

4.5 Consider the nonlinear system

dx

dt
= ρyx− y2, (3a)

dy

dt
=
y

x
− ρ, ρ > 0. (3b)

Write the phase plane equation and solve it. What do the solutions of the phase plane
equation represent?

5. Consider the competition system

dx

dt
= x(4 − x) − 2xy, (4a)

dy

dt
= y(3 − y) − αxy. (4b)

(a)4 Assuming that we are only interested in solutions where x ≥ 0 and y ≥ 0, find the
four steady states.

(b)2 Sketch the nullclines. Label all of the intercepts and intersection points.

(c)10 Determine the stability of each of the four steady states. The stability of two
of the steady states will depend on the value of α. Hint: The calculations for
the coexistence steady state simplify if you do two things: (1) factor the common
denominator out of the Jacobian and find the eigenvalues of the remaining matrix,
and (2) before computing the eigenvalues, let η = 4α− 3 and rewrite the matrix in
terms of η instead of α.
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(d)4 Sketch the phase plane (two cases).

(e)4 Sketch the bifurcation diagram for the x-coordinate of each steady state (α is the
bifurcation parameter). Since there are two steady states with x∗ = 0, do not
include the extinction steady state in your diagram.
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Question: 1 2 3 4 5 Total

Points: 8 5 3 5 24 45

Score:
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