
Seasonally Varying Predation Behavior and Climate Shifts

Are Predicted to Affect Predator-Prey Cycles

Rebecca Tyson1,*,† and Frithjof Lutscher2,†

1. Mathematics and Statistics, Unit 5, Irving K. Barber School of Arts and Sciences, University of British Columbia–Okanagan, 1177 Research
Road, Kelowna, British Columbia V1V 1V7, Canada; 2. Department of Mathematics and Statistics, Department of Biology, University of
Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada

Submitted June 4, 2015; Accepted May 17, 2016; Electronically published September 28, 2016

Online enhancements: appendixes. Dryad data: http://dx.doi.org/10.5061/dryad.f2mk6.

abstract: The functional response of some predator species changes
from a pattern characteristic for a generalist to that for a specialist ac-
cording to seasonally varying prey availability. Current theory does not
address the dynamic consequences of this phenomenon. Since season
length correlates strongly with altitude and latitude and is predicted to
change under future climate scenarios, including this phenomenon in
theoretical models seems essential for correct prediction of future eco-
system dynamics. We develop and analyze a two-season model for the
great horned owl (Bubo virginialis) and snowshoe hare (Lepus amer-
icanus). These species form a predator-prey system in which the gen-
eralist to specialist shift in predation pattern has been documented em-
pirically.We study the qualitative behavior of this predator-preymodel
community as summer season length changes. We find that relatively
small changes in summer season length can have a profound impact on
the system. In particular, when the predator has sufficient alternative
resources available during the summer season, it can drive the prey
to extinction, there can be coexisting stable states, and there can be sta-
ble large-amplitude limit cycles coexisting with a stable steady state.
Our results illustrate that the impacts of global change on local eco-
systems can be driven by internal system dynamics and can potentially
have catastrophic consequences.

Keywords: predator-prey model, seasonality, behavioral response,
global change.

Introduction

Traditional predator-prey theory classifies predators as be-
ing either specialist or generalist, but what if the actual
predator-prey relationship varies seasonally? In the tradi-
tional view, predation behavior is an inherent property of
the interaction between two particular species. Accordingly,
predator-prey theory is based on dynamic models that use

different functional responses to distinguish specialist pred-
ators from generalist predators, and these functional forms
are fixed over time. Seasonal variations in food supply how-
ever, can have a strong effect on the functional response
within a given predator-prey relationship (van Leeuwen et al.
2007), so that a predator appears to respond to prey density
as a generalist when many prey species are available but as
a specialist when few species are present (see examples be-
low).
We use the term “behavior shift” to describe the qualita-

tive seasonal change in functional response from a concave
shape (Holling type II), typically associated with a specialist
predator, to a sigmoid shape (Holling type III), representing
generalist predation. There is currently no theory in place
to address the dynamic consequences of this shift in behav-
ior. Theoretical models have addressed other aspects of sea-
sonal variation, for example, the effects of seasonally vary-
ing strength of interaction in predator-prey communities
(Turchin and Hanski 1997; Taylor et al. 2013) and in dis-
ease transmission dynamics (Keeling and Rohani 2008; Ba-
caër 2012). Seasonality is included in these models by hav-
ing key parameters take on season-specific values, resulting
in quantitative changes in certain processes, such as contact
rates or growth rates. These studies and have shown that
seasonality modeled in this way is a key factor in system dy-
namics.
We are interested in a more fundamental, qualitative shift

of the interaction through the seasons, not only a quantita-
tive change. We anticipate that such a behavioral shift could
have significantly more dramatic effects on predator-prey
dynamics. The interaction of specialist predators with their
prey can drive population cycles through strong, delayed
negative feedback loops (Berryman 1989). Generalist preda-
tors, on the other hand, are thought to produce weaker feed-
back (Maynard Smith 1974) and thus have a damping effect
on cycles (Turchin and Hanski 1997; Bjørnstad et al. 2010).
The combination of these effects through seasonal behavior
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shift could potentially result in fundamentally new system dy-
namics.

Understanding the effects of seasonal variation on eco-
systems is particularly relevant in the context of global change,
which is inexorably altering seasonal patterns. Changes in
season length can potentially disrupt predator-prey system
dynamics and put organisms at risk of extinction, if key
aspects of the interaction vary seasonally. Indeed, predicting
species persistence and population dynamics under changing
climates is a pressing challenge (Molnàr et al. 2010; Leroux
et al. 2013). How, then, does global change affect predator-
prey systems when there is a seasonal behavioral shift in pre-
dation? Motivated by experimental data on great horned owl
(Bubo virginialis) behavior from the boreal forest (a region
particularly vulnerable to climate change; IPCC Working
Group I 2007; Allen et al. 2013), we use a novel, time-periodic
predator-prey model to address this question.

A generalist to specialist behavior shift was identified in
the great horned owl in the boreal forest. The long-termmon-
itoring project in the Kluane, Yukon Territory, Canada, pro-
vides data on gut content of the great horned owl, indicating
that its predation pattern changes from specialist in the win-
ter to generalist in the summer (Rohner et al. 2001, fig. 15.6).
In winter, snowshoe hares (Lepus americanus) represent a
consistently high percentage (typicallymore than 80%, except
in 1994) of the diet, with usually only one other prey spe-
cies consumed. In addition, experimental data on snowshoe
hare predation by great horned owls exhibit a type II func-
tional response, confirming that the great horned owl is a spe-
cialist during the winter. In summer, snowshoe hare is still
prominent in the owl diet, but its percentage varies greatly
and closely reflects the changes in available hare density.
There are typically at least four other prey species present.
Data on summer predation by owls is best fit with a type III
functional response typical of a generalist predator (Rohner
et al. 2001, fig. 15.9). Thus, the relationship between the great
horned owl and the snowshoe hare exhibits a seasonal
behavior shift from specialist-type predation in the winter to
generalist-type predation in the summer.

This strong seasonal shift is not limited to the owl-hare
system. Evidence for behavior shifts in functional response
also exists in Alaska, where the bald eagle (Haliaeetus leu-
cocepalus) preys on Canada geese (Branta canadensis; Mil-
ler et al. 2006). In Nova Scotia, the coyote (Canis latrans)
preying on white-tailed deer (Odocoileus virginianus) and
snowshoe hares also exhibits a seasonal behavior shift (Pat-
terson et al. 1998).

Historically, models for predator-prey interactions study
dynamical behavior in the context of one functional re-
sponse (e.g., Strohm and Tyson 2009) or compare the ef-
fects of different functional responses (e.g., Freedman and
Wolkowicz 1986). Universally, however, the functional re-
sponse is considered a fixed characteristic of the predator.

If seasonal variation is included, the standard approach
is to vary individual model parameters while preserving
the basic shape (generalist or specialist) of the functional
response. Such approaches consider quantitative seasonal
variation in the strength of predation and can explain lati-
tudinal variation in population cycles of voles (Turchin and
Hanski 1997; Taylor et al. 2013). These models also gener-
ate challenges for mathematical analysis (Rinaldi et al. 1993;
Gragnani and Rinaldi 1995). None of these models, how-
ever, can capture a fundamental qualitative change in the
process itself, such as the behavior shift in predation de-
scribed above.
We present and analyze a two-season model for one fo-

cal prey and one predator, wherein the predator is a spe-
cialist in the winter and a generalist with alternative food
sources during the summer. We study in detail how the dy-
namics of this system change when season length varies.
An increase in summer season can represent decreasing lat-
itude or altitude and/or future climates under global change.
We find that the model dynamics are relatively simple
when the alternative resources in the summer are insuffi-
cient to sustain the predator in the absence of the focal
prey. When alternative resources are abundant, the system
can generate unexpected dynamics such as prey extinction
or large-amplitude limit cycles. We show that the response
of communities to climate change goes beyond the simple
question of species persistence or extirpation and includes
abrupt qualitative changes in community dynamics.

Model and Methods

Formulating a Predator-Prey Model for Discrete Seasons

For a minimal model that captures the processes described
above, we consider a predator-prey system in a two-season
environment, where the summer season lasts for a frac-
tion, 0 ≤ Ts ≤ 1, of the year. During the summer, the focal
prey (N) grows logistically and is subject to predation by a
generalist predator (P) with a type III (Holling 1959) func-
tional response (Rohner et al. 2001, fig. 15.9). The general-
ist predator grows in a logistic-like fashion, independent of
the focal prey, and enhances its growth rate by consuming
the focal prey when sufficiently abundant. The equations
describing summer dynamics read (Erbach et al. 2013)

dN
dt

p rN 12
N
K

� �
2

aN2P
b2 1 N2 ,

dP
dt

p g
aN2P

b2 1 N2 1
sP

11 nP
2mP:

ð1Þ

For a description of parameters, see table 1. A similar model
with a type II functional response was studied by Magal et al.
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(2008). In the standard model for prey and generalist-
predator dynamics, the predator has insufficient or no al-
ternative resources. It cannot sustain itself in the absence
of the focal prey (Morozov and Petrovskii 2009; see
Erbach et al. 2013 for a criticism and detailed discussion
of this assumption). This standard scenario arises in our
model when n p 0 and s2m ! 0.

During the winter season, predation continues to be
the preeminent cause of prey death (Rohner et al. 2001),
whereas prey growth is negligible due to scarcity of re-
sources. Because alternative prey are unavailable, the pred-
ator acts as a specialist with type II functional response
(Rohner et al. 2001, fig. 15.9). Hence, the model for the
winter dynamics differs from the summer model not sim-
ply through parameter values but through a qualitatively
different functional response characterizing the process
of predation. Predator growth occurs only from predation
on the focal prey according to a type II numerical response.
We choose the equations

dN
dt

p 2
aNP
b1 N

,

dP
dt

p g
aNP
b1 N

2 mP:

ð2Þ

The parameters in equation (2) are explained in table 1.
To formulate our complete seasonal model, we alternate

equations (1) and (2) according to season. Our basic time
unit is 1 year, and we choose time t p 0 to mark the be-

ginning of summer. Then equations (1) are valid for 0 ≤
t ! T s, while equations (2) are valid for Ts ≤ t ! 1 and
are periodically alternating from then on. In particular,
the switch between seasons is instantaneous. Population den-
sities remain continuous; that is, the densities at the end of
one season serve as initial densities for the next season. To
simplify the analysis and identify the important parameter
combinations, we scale the hare populations by their car-
rying capacity K and the predator population by the quan-
tity rK=a, which is the hare population growth rate divided
by the maximum per predator kill rate. With this scaling,
we can write the model using dimensionless densities n p
N=K and p p aP=(rK) and time t p tr. Our complete
seasonal model then reads

summer:
dn
dt

p n(12 n)2
n2p

~b
2 1 n2

,

dp
dt

p ~g
n2p

~b
2 1 n2

1 ~s
p

11 ~np
2 ~mp,

winter :
dn
dt

p 2
~anp
~b 1 n

,

dp
dt

p ~g
~anp
~b 1 n

2 ~mp,

ð3Þ

where ~a p a=a, ~b p b=K , ~b p b=K , ~m p m=r, ~m p m=r,
~s p s=r, ~n p nrK=a, and ~g p ga=r.
We obtain parameter estimates for the interaction be-

tween the great horned owl and the snowshoe hare from

Table 1: Model parameters, their units, and numerical values (dimensional) with references

Parameter Description Unit Range Source

r Prey summer growth rate Per year 1.5–2.0 Hodges et al. 2001;
King and Schaffer 2001

K Prey summer carrying capacity Hares/ha 4.0–8.0 (12) Ruggerio et al. 2000;
Hodges et al. 2001

a Specialist saturation killing rate Hares/owl/year 50–150 (250) Rohner et al. 2001
b Specialist half-saturation Hares/ha .05–.25 Rohner et al. 2001
g Conversion efficiency Owls/hare .007–.012 Smith and Murphy 1979;

Houston et al. 1998a

m/m Summer/winter predator death rate Per year .14–.6 Houston and Francis 1995;
Houston et al. 1998a

a Generalist saturation killing rate Hares/owl/year 110% 5 15% Rohner et al. 2001b

b Generalist half-saturation Hares/ha 1% 5 15% Rohner et al. 2001b

s Generalist predator maximum growth rate Per year 1.4 Smith and Murphy 1979;
Houston et al. 1998a

n Generalist predator density
dependence

Per owl Unknown

Note: Numbers in parentheses are outliers reported in isolated studies. Many of the parameter values were obtained from previous modeling work (Tyson
et al. 2010). Note that the two saturation killing rates, a and a, are the product of the encounter rate and the probability of making the kill at each encounter.

a Parameters derived using demographic parameters retrieved from listed sources.
b Parameters obtained through a least squares fitting of the functional forms to the data in figure 15.9 of indicated source. Since this fitting yielded only a

single value for each parameter, we assumed that there was 515% variation possible. This is considerably less than the variation exhibited in the other pa-
rameter values except r.
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the literature (table 1). According to these values, the ranges
for scaled parameters are ~a p 0:40–2:7, ~b p 0:004–0:6,
~b p 0:07–0:3, ~m p ~m p 0:07–0:4, ~s p 0:07–0:9, ~g p
0:33–1:0. From this point forward, we drop tildes to simplify
notation.

Preliminary Observations and Analytic Approach

To understand the dynamics of the seasonal model, we need
to understand the dynamics of its parts. The dynamics of
the winter model (eq. [2]) alone are simple: prey density
decreases, predator density may initially increase, but even-
tually both approach zero. The dynamics of the summer
model (eq. [1]) are considerably more complex. When the
predator has insufficient alternative resources (n p 0, s2
m ! 0), predator and prey stably coexist when b 1 K=271=2

(or ~b 1 1=271=2 ≈ 0:19), but when b ! K=271=2, stable limit
cycles are possible (Morozov and Petrovskii 2009). With
sufficient alternative resources (s 1 0), a detailed bifurcation
analysis found four key scenarios (Erbach et al. 2013): de-

pending on parameter values, prey and predator can (1) sta-
bly coexist or (2) cycle, there can be (3) two alternative stable
coexistence states, or (4) a stable coexistence state surrounded
by a stable limit cycle. Similar dynamics arise with a type II
functional response (Magal et al. 2008).
The seasonal model (eq. [3]) with annual variation has

only two steady states: the zero state when predator and
prey are both absent and the prey-only state, when the
predator density is zero. The stability conditions for these
states can be calculated explicitly (app. A; apps. A, B avail-
able online) but are not our focus here. All other solutions
exhibit (at least) annual variation: prey density decreases in
the winter but may increase in the summer, whereas pred-
ator density may increase or decrease in either season. We
illustrate the two main, qualitatively different, long-term
scenarios of the seasonal model in figure 1. In the first sce-
nario (fig. 1A, 1C), we observe only annual variation, where
both densities decrease during the winter and increase dur-
ing the summer. The increase exactly offsets the decrease;
the yearly average remains constant. In the second scenario

s = 1, Ts = 0.497 s = 2, Ts = 0.48

Phase Plane, Dimensionless Model
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Figure 1: Two typical long-term scenarios in the two-season model (eq. [3]): annual variation (A, C) and multiannual cycles (B, D). In the
phase-plane plots (A, B), arrows indicate the direction of solutions during the summer (solid lines) and winter (dashed lines). Corresponding
time series plots (C, D) show prey density of the annual model (solid lines) and the averaged model (dash-dotted lines). Asterisks indicate
annual averages of the seasonal model.
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(fig. 1B, 1D), the yearly average exhibits a multiannual,
quasi-periodic cycle, and within each year densities of prey
and predator fluctuate.

Aside from numerical simulations, there are no explicit
techniques available to study our two-season model. In-
stead, we use temporal averaging to derive a much simpler
predator-prey model that still contains the basic mecha-
nisms that we study here. Temporal averaging applies to
systems with inherently different timescales. Mathematical
theory shows that the dynamics of such systems are mostly
determined by the slow timescale behavior, appropriately
averaged over the fast timescale (Guggenheimer and Holmes
1983). In our case, population dynamics represent the slow
timescale, whereas seasonal variation occurs on a fast time-
scale. Accordingly, the temporally averaged equations for
model (3) consist of the weighted sum of the right-hand sides
of equation (3) with weights according to the relative season
lengths. The averaged model is not an exact model for the
averages of the seasonal model but only an approximation.
To distinguish between the seasonal model and the averaged
model, we denote prey and predator densities in the averaged
model as x and y, respectively. The model reads

dx
dt

p Ts x(12 x)2
x2y

b2 1 x2

� �
1 (12 Ts) 2

axy
b1 x

� �
,

dy
dt

p Ts g
x2y

b2 1 x2
1 s

y
11 ny

2my

� �

1 (12 Ts) g
axy
b1 x

2 my

� �
:

ð4Þ
This averagedmodel can be analyzed with standard phase-

plane techniques (see below). Plotting the solutions of equa-
tions (4) (fig. 1C, 1D, dashed lines) indicates that the averaged
model can approximate the averages of the two-seasonmodel
fairly well. The averagedmodel slightly overpredicts averaged
densities in the first scenario but is virtually indistinguishable
from averaged densities in the scenario of multiannual cycles.
In the following, we will present results from extensive nu-
merical simulations of the two-season model (eq. [3]) and
use the averaged model (eq. [4]) to gain deeper insights into
these dynamics.

Results

We focus our analysis on the effect that a change of season
length has on the dynamics. An increase in summer season
length can represent decreasing latitude or altitude or can
represent future climates under global change. For simplic-
ity and comparison purposes, we begin with the standard
model of insufficient alternative resources for the generalist
predator. All numerical solutions were produced in Matlab

and deposited in the Dryad Digital Repository: http://dx.doi
.org/10.5061/dryad.f2mk6 (Tyson and Lutscher 2016).

Predator with Insufficient Alternative Resources

When the predator has insufficient alternative resources
(n p 0, s2m ! 0), it cannot persist in the absence of the
focal prey in the standard model, that is, equations (1), and
the same is true for the two-season model. In the presence
of the focal prey, the predator can persist under certain con-
ditions. Roughly speaking, the total predator growth rate
over a year is large enough for persistence if prey density
is high enough, predation is frequent enough, and predator
death is small enough; see appendix A for details. For pa-
rameter values within the range of the great-horned owl and
snowshoe hare system, coexistence of the two species is guar-
anteed for large enough values of Ts. Numerical simulations
show the two long-term behaviors described in figure 1: an-
nual variation with constant average or multiannual cycles.
As the season length changes, the dynamics of the system
may switch from one to the other (see fig. 2).
When the summer season is short, prey growth is insuf-

ficient to sustain a predator population (plot not shown),
but as the summer season lengthens, the predator persists
in the system. For example, for Ts p 0:55, the two species
coexist with seasonal variation and constant annual aver-
ages (fig. 2A). The annual average of the prey population
decreases with increasing summer season length, while the
corresponding predator density increases. Both populations
should benefit from a longer summer season, but the pred-
ator benefits more. As Ts increases further, we eventually
observe sustained multiannual oscillations (e.g., Ts p 0:75;
fig. 2B). For even longer summers, the multiannual cycles
disappear and the prey density stabilizes at a low yearly av-
erage (e.g., T s p 0:9; fig. 2C). The corresponding predator
density is high. The annual averages of prey and predator
show damped oscillations. These changes in the dynamics
are summarized in figure 3A. We simulated the seasonal
model until transients had died out and then recorded the
maximum and minimum yearly average for the subsequent
50 years. For short and long summers, the average maxi-
mum andminimum densities are the same: annual averages
remain constant, and variation is limited to within years.
For intermediate summer length, the annual averages show
large limit cycles.
Two mechanisms contribute to the transition from pred-

ator extinction to stable coexistence as summer season length
increases. The effective annual growth rate of the prey in-
creases so that prey biomass approaches carrying capacity
faster. Summer season also has the higher predator growth
rate. So, as season length increases, predator biomass grows
more during the summer, and since prey biomass is greater
at the end of the summer, growth will continue somewhat
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into the winter, so that the predator can eventually persist
when Ts is large enough. As Ts increases more, the negative
feedback loop becomes so strong that stable coexistence gives
way to cycles, as is known from the Rosenzweig-MacArthur
model. The eventual disappearance of cycles and stabiliza-
tion of the coexistence state for large Ts does not arise in
the Rosenzweig-MacArthur model but is due to the general-
ist functional response in our model. The prey density falls
to such low levels that the type III functional response is
not strong enough to enforce the required negative feedback.
The populations stabilize.
To understand these dynamics better, we study the cor-

responding averaged model (eq. [4]) via standard phase-
plane techniques. The prey nullcline is given by the equa-
tion

P(x) p
Ts(12 x)

[Tsx=(b
2 1 x2)]1 [(12 Ts)a=(b1 x)]

, ð5Þ

whereas the predator nullcline is a vertical line at x p x*,
given by the equation

Ts
g(x*)2

b2 1 (x*)2
1 (s2m)

� �
p (12 Ts)

gax*

b1 x*
2 m

� �
: ð6Þ

Both nullclines are included in the plots in figure 2. There
is a meaningful coexistence state only when 0 ! x* ! 1 or,
equivalently, when a is large enough, that is, when

a 1
Tsf[g=(b2 1 1)]1 s2mg2 (12 Ts)m

(Ts 2 1)[g=(b1 1)]
: ð7Þ

Since the predator nullcline is vertical, the coexistence state
is stable exactly when the slope of the prey nullcline at this
state is negative. For the three cases in figure 2, the aver-
aged model has a stable coexistence point for Ts p 0:55
and Ts p 0:9 and a stable limit cycle for Ts p 0:75. This
prediction clearly agrees with the simulations of the seasonal
model.
Moreover, the averaged model also predicts the ampli-

tude (and period) of the yearly averages of the seasonal
model in the case of multiannual cycles (fig. 3A). Dashed
lines indicate the maximum and minimum prey density of
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Figure 2: Solution trajectories of the seasonal model (eq. [3]) in the
phase plane for three different values of Ts. Solution trajectories in
A and C include transient and steady-state behavior; the solution tra-
jectory in B shows only the long-term behavior. The steady-state be-
havior in each case is annual variation for Ts p 0:55 (A), multiannual
cycles for Ts p 0:75 (B), annual variation for Ts p 0:9 (C). Solid lines
correspond to nullclines of the averaged model (eq. [4]). Parameters
are b p 0:25, a p 2, b p 0:05, s p 0:5, m p m p 0:6, and g p
0:25.
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the averaged model over a 50-year period after transients
have disappeared. Due to this surprisingly good agreement
between the average of the seasonal model and the averaged
model, we can use the simpler averaged model to explore
how season length affects population dynamics. Figure 3B
illustrates how the transition between a stable coexistence
point and limit cycles (a Hopf bifurcation in the averaged
model) depends on winter killing rate (a) and summer
half-saturation constant (b). When summer predation
saturates slowly (b p 0:5), the Hopf bifurcation line is
monotone increasing: as the summer season becomes lon-
ger, stronger winter predation is necessary to generate the
required negative feedback that drives population cycles.
This relationship indicates that cycles are driven by special-
ist predation in the winter. On the other hand, when sum-
mer predation saturates quickly (b p 0:23), the Hopf bifur-
cation line is decreasing for a wide range of Ts and increases
only as Ts approaches 1. In this case, summer predation is
higher at lower values of b and thereby acts to strengthen
the negative feedback loop. This effect becomes stronger
as summer season length increases and disappears only for
very long summers (due to the type III functional response).

Predator with Sufficient Alternative Resources

In the previous scenario, the generalist predator could not
survive in the absence of the focal prey. A true generalist
can survive on a range of different prey types and is not

overly dependent on one particular prey. Thus, we consider
the case n 1 0 and s 1 m. However, with this choice, the
model for the summer season alone shows a complex bifur-
cation structure (Erbach et al. 2013). Since a complete anal-
ysis of the corresponding seasonal model is beyond the
scope of this work, we focus on explaining two novel sce-
narios and their implications in detail.

Scenario 1: Extinction of the Prey. When the predator has a
positive growth rate in the summer, independent of focal
prey density (n 1 0 and s 1 m), then it can persist in the sys-
tem when the summer season is long enough (app. A). Sim-
ulations of the seasonal model demonstrate that it may even
drive the prey to extinction when the summer season is par-
ticularly long (fig. 4).
When the summer season is relatively short but long

enough for the predator to persist, then it will coexist with
its prey at constant average density with annual variation
(fig. 4A). All solutions approach this state. When the sum-
mer season is very long, the prey is driven to extinction;
only the predator survives (fig. 4D). All solutions approach
the axis where prey density is zero but retain positive pred-
ator density. Its alternative resources during the summer
months allow the predator to maintain high population den-
sities. The type II functional response in the winter results
in high (per capita) predation pressure even at low focal prey
density. In the transition between these two extremes, we ob-
serve coexistence of two locally stable states. Figure 4B, 4C
each depict two solutions, one that approaches the prey ex-
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tinction state and one that approaches a coexistence state
with annual variation. In C, the annual averages approach
the positive steady state with damped oscillations. No such
oscillations are present in B. These qualitative changes are
summarized in figure 5, where we plot the average annual
prey density at stable steady states (open circles, A). Exact
but implicit conditions for prey growth at low densities are
given in appendix A.

Coexisting stable states (or bistability) often arise when a
pair of steady states emerges as a parameter changes. A fa-
mous example is the spruce budworm model (Ludwig et al.
1978). As the two steady states are a saddle and a node, this
bifurcation is called a saddle-node, or fold, bifurcation. Our

analysis of the corresponding averaged model (eq. [4]) re-
veals precisely this expected structure (fig. 4). The model
nullclines intersect twice when Ts ≤ 0:6. The intersection
corresponding to larger prey density is a stable node, the
intermediate one a saddle. As Ts increases, the two steady
states collide and disappear in a saddle-node bifurcation.
For larger Ts, all solutions converge to the prey extinction
state. The solid curve in figure 5A represents the prey den-
sity at the positive steady states; it has two branches in the
interval 0:585 ! Ts ! 0:615. The asterisks in the figure rep-
resent stable steady states arising from numerical simula-
tions of the averaged model (eq. [4]) with different initial
conditions, one in the basin of attraction of the coexistence
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steady state and one outside this basin culminating in prey
extinction. The open circles are the annual average of simu-
lations of the seasonal model (eq. [3]) using the same two
initial conditions. As in the previous case, the averagedmodel
predicts the qualitative and quantitative behavior of the an-
nual average of the seasonal model very well. The only fea-
ture of the seasonal model that the averaged model cannot
capture is the oscillatory approach to the coexistence state
for Ts p 0:6 (fig. 4C). Oscillations are impossible near the
coexistence state in the averaged model. Annual variation
allows solutions to “jump” across the nullclines, thus gener-
ating these oscillations.

Three mechanisms interact to produce this bistability
scenario: (i) the predator can sustain itself on alternative
prey in the summer, (ii) the predator is a specialist in the
winter, (iii) the type III functional response in the summer
leads to a low per capita predation pressure (i.e., aNP=(b2 1
N2)) at low and high prey density. The highest per capita
predation pressure occurs at intermediate prey density. An
increase in summer season length boosts predator density
in the absence of the focal prey. During the summer, the
focal prey population could grow from low density because

generalist predation pressure is negligible. During the win-
ter, however, a high predator density exerts strong predation
pressure even at low focal prey density, because of the spe-
cialist functional response. For this reason, the prey popu-
lation is unable to grow from low density when summer
seasons are long enough (Ts ≈ 0:585 in fig. 5A). The prey
extinction state is stable.
At high prey density, summer predation boosts predator

density and is a significant source of prey mortality, but the
effect is limited by the maximum predation rate. If the prey
density at the end of the summer is still sufficiently high and
the predator density sufficiently low, then the prey can sur-
vive the winter in reasonably high numbers and thrive again
in the subsequent summer. Hence, an initially high enough
prey density can persist in the system if summers are short
enough (Ts ≈ 0:615 in fig. 5A). The coexistence state is sta-
ble.
If the prey extinction state becomes stable before the co-

existence state is destroyed, we observe two coexisting sta-
ble states (0:585 ! Ts ! 0:615 in fig. 5A). At intermediate
prey density, per capita predation is maximized in the sum-
mer so that predator density at the end of the summer is rel-
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atively high and prey density is relatively low. As a result,
the prey succumbs to the high predation pressure during
the winter and cannot recover the following summer. If the
predator behaved as a generalist during the winter season as
well, prey extinction could not occur.

Scenario 2: Large Limit Cycles. In this second scenario, we
significantly reduce the half-saturation constant for summer
predation, b, as compared to the previous section, but keep
similar values for all other parameters. As a result, we ob-
serve a complex combination of the bistable structure ob-
served in the previous section combined with a limit cycle
(fig. 6). When summers are short, the two populations coex-
ist with constant annual average at highdensities (A). Increas-
ing summer length destabilizes the system so that multian-

nual oscillations with large amplitudes of the annual averages
arise (fig. 6B). While these oscillations persist, a coexistence
state with constant annual averages at low density becomes
stable (fig. 6C). For even longer summers, the multiannual
cycles disappear, and all solutions approach the coexistence
state with low-density annual averages (fig. 6D). A summary
of these transitions is depicted in figure 5B. Formuch longer
summers, the prey becomes extinct, and the predator per-
sists as in the previous scenario (plot not shown).
The corresponding averaged model is, again, a very good

predictor of the average of the seasonal model and helps ex-
plain the various transitions that we observe (fig. 5B). When
Ts is small, predator and prey coexist stably at high prey
density. As Ts increases, two steady states emerge (saddle-
node bifurcation), but both are unstable (Ts ≈ 0:394). Just
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before the stable coexistence point and the intermediate sad-
dle collide and disappear (again a saddle-node bifurcation),
a large limit cycle appears (Ts ≈ 0:404).Mathematically, this
limit cycle does not arise from a steady state through a Hopf
bifurcation as we saw earlier but through a so-called homo-
clinic loop bifurcation (see Erbach et al. 2013 for a detailed
explanation of a similar situation). The unstable coexistence
state becomes stable (Ts ≈ 0:41), where an unstable limit cy-
cle emerges. Mathematically speaking, this is a Hopf bifur-
cation, but in contrast to the previous case, it is subcritical
now, meaning that the emerging limit cycle is unstable. The
stable and unstable limit cycles collide and annihilate one
another (Ts ≈ 0:42). Only the stable coexistence state at low
prey density remains. This annihilation of limit cycles is sim-
ilar to the annihilation of two steady states in a saddle-node
bifurcation and is therefore called a saddle-node bifurcation
of limit cycles (Ts ≈ 0:42).

The averagedmodel predicts the dynamic behavior of the
seasonal model, including cycle amplitude and period. More
surprisingly, solutions of the seasonal model converge to
the coexistence state with annual variation in the interval of
bistability (0:41 ! Ts ! 0:42). One could expect that within-
year variation, being as large as it is in figure 6B, would
send solutions to the large-amplitude limit cycles instead of
keeping them close to the low coexistence point. Determin-
ing exactly which initial conditions lead to limit cycles and
which to stable coexistence for the seasonal model is be-
yond the scope of this work.

There are a number of similarities and differences be-
tween this and the previous scenario. We still observe the
collapse of the high-density coexistence state via a saddle-
node bifurcation. This time, however, the alternative steady
state is unstable, and the system is forced onto a large-
amplitude limit cycle. The low prey density state becomes
stable as it reaches such low values that the negative feedback
generated by the type III functional response is no longer
strong enough to drive cyclic behavior. The large-amplitude
cycle still persists in this range, but themaximumof this cycle
declines rapidly with increasing summer length, and the cy-
cle disappears when the long summer provides abundant al-
ternative resources for the predator.

Discussion

Many ecosystems experience strong seasonal variation in
their environments, particularly at high altitudes or lati-
tudes, and key behaviors of individuals in these ecosystems
may change fundamentally with environmental conditions.
As individual behavior, in turn, determines population-level
patterns, seasonal variation has the potential to influence the
stability of populations. While several studies relate season-
ality to disease dynamics (Keeling and Rohani 2008), there

is currently no theory in place for how seasonal variation
influences predator-prey systems. To understand how geo-
graphic variation and/or global change affect(s) these eco-
system dynamics, we need to explicitly include seasonality
into models. While previous authors have explored predator-
prey models with temporally varying strength of predation
(Rinaldi et al. 1993; Gragnani and Rinaldi 1995) or of repro-
duction and mortality (Hanski and Korpimäki 1995), our
model is the first to vary the qualitative characteristics of a
species interaction between seasons. Our model is based on
the observations of snowshoe hare and owl functional rela-
tionships observed in the boreal forest (Rohner et al. 2001).
Figures 15.6 and 15.9 in Rohner et al. (2001) clearly show
the switch from specialist (concave) predation in the winter
to generalist (sigmoid) in the summer. The parameter values
for our study are chosen from the literature on snowshoe hare
and great horned owl. This work thus sheds light on the pos-
sible dynamics this system could exhibit with the advance of
global change. Our results, however, are general and apply to
any predator-prey system in which predation behavior, as
measured by the functional response, changes seasonally be-
tween that of a generalist and that of a specialist.
We formulated our results in terms of changes in season

length. First, we found that changes in season length can af-
fect the strength of the negative feedback cycle and thereby
stabilize or destabilize a coexistence state. Second, we found
dynamically complex behavior if the generalist predator
has sufficient alternative prey in the summer season. The
prey extinction scenario illustrates that internal dynamics
could lead to coexisting stable states (bistability) and eventual
prey extinction as a result of increasing summer length. In
predator-prey systems, the study of coexisting stable states
has received less attention than population cycles. Bistability
can arise from a nonmonotone functional response (Freed-
man andWolkowicz 1986), from generalist predators (Steele
and Henderson 1992), or from stage structure (Guill 2009).
Extinction of prey is rare in predator-prey models but can
arise through apparent competition between two prey spe-
cies (Holt 1977), even when one prey is held constant (Ma-
gal et al. 2008). While we are not explicitly modeling a
second prey, we can interpret this bistability and eventual
extinction of our focal prey in terms of apparent compe-
tition but with a seasonal dimension. Increasing summer
season length can benefit both populations, but the preda-
tor, whose alternative food sources are assumed constant
throughout the summer, benefits more and drives the focal
prey to extinction in the winter when relying on that prey
exclusively. If the predator were a generalist (modeled with
a type III functional response) year-round, we would not
observe extinction (Erbach et al. 2013).
Our results depend on the seasonal switch of the func-

tional response from a sigmoid (Holling type III) to a con-
cave (Holling type II) shape. While the type II response for
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specialist predators is based on mechanistic theory, the
type III response for generalist predation is a phenome-
nological way to capture prey switching (Murdoch 1969).
A mechanistically grounded approach would employ a
multispecies functional response (MSFR; McLellan et al.
2010) for two prey species and hold the density of the sec-
ond prey constant. This approach is also appealing since
statistical tests often fail to detect differences between type
II and type III responses from small data sets (Marshal and
Boutin 1999). We investigated the dynamics that result in
our seasonal model with the MSFR presented by McLellan
et al. (2010; see their eq. [2]). We held the alternative prey
density constant during the summer season and set it equal
to 0 during the winter season.We found that thismodel can
produce qualitatively similar results to those presented in
“Predator with Insufficient Alternative Resources” and “Sce-
nario 1: Extinction of the Prey” but not the dynamics that
we found in “Scenario 2: Large Limit Cycles.”We conclude
that the latter dynamics are possible only if the predator
shows some switching behavior, which the type III response
emulates but the approach by McLellan et al. (2010) does
not. Van Leeuwen et al. (2007) included prey switching in
a mechanistic derivation of a MSFR and found that, for con-
stant alternative prey, a sigmoidal shape emerged. Abrams
(1990) had argued that the parameters in the type II response
should be density dependent to model adaptive behavior in
the presence of multiple prey. With appropriately chosen
density-dependent rates, a sigmoidal shape can emerge. A de-
tailed study of our system in this general setting remains a
future challenge, but we conjecture that our results depend
only on the qualitative shape (concave vs. sigmoid) and not
on details.

The large limit cycles scenario exhibits another case of
coexisting stable states: a stable steady state and a stable
limit cycle. Analytically detecting parameter ranges for which
such scenarios exist is very difficult (Freedman and Wolko-
wicz 1986). We suspect that some of the models that show
bistability (e.g., Spencer and Collie 1995) could also exhibit
large limit cycles that the authors did not detect, but see
Erbach et al. (2013). As a result of this bistable structure,
we might observe different dynamic behavior of the same
predator-prey system in functionally identical but geograph-
ically different locations, due to initial conditions or one-time
disturbances. Previous authors used gradual changes in the
amount of generalist predation to understand the geographic
variation in the amplitude of vole cycles in Fennoscandia
(Turchin and Hanski 1997). Our seasonal model provides an
alternative explanation. In addition, we find that including
seasonality can lead to hysteresis if there is a gradual increase
in summer season length (due to, e.g., global warming), fol-
lowed by a gradual decrease during temporary cooling peri-
ods. Consider figure 5 when Ts ≈ 0:41 and assume that the
system exhibits large limit cycle oscillations. As summers

become longer (Ts 1 0:42), the limit cycle disappears and
gives way to a stable steady state at low population levels.
If summersgraduallybecomeshorter again,populationdensi-
ties would not resume cycling until T s ! 0:41. These changes
in Ts translate to changes on the order of a few days in di-
mensional terms. Changes of this magnitude are consis-
tent with recent and predicted climates in the boreal forest
(Duguay et al. 2006; Allen et al. 2013). While an increase
in season length of just a few days seems small, the dramatic
switch from cyclic to noncyclic dynamics can occur if the
system is near a bifurcation point. For ecosystems that rely
on keystone species such as the snowshoe hare, the differ-
ence between oscillatory and steady-state hare dynamics can
be profound, especially when steady-state levels are so much
lower than the cyclic maxima.

Model Complexity

It is clear from these examples that the additional complex-
ity of the seasonal model is necessary to uncover and under-
stand potential system dynamics. Likewise, seasonality is
crucial in related predation models (Hanski and Korpimäki
1995; Turchin and Hanski 1997; Taylor et al. 2013), in a
competition model (Hsu and Zhao 2012), and in epidemic
models (Altizer et al. 2006; Bacaër 2012). Increased model
complexity comes at a price: more data are required for pa-
rameter estimation; model analysis is more complicated.
We have demonstrated, however, that the analysis can be
manageable using techniques such as averaging (see Hsu
and Zhao 2012 and discussion below) and that the pro-
found effects of seasonality make it an important consider-
ation in model design. Ideally, data would be gathered in
all relevant seasons and used to validate a model. When this
is impossible, one should carefully think about how spe-
cies behavior might change between seasons. Since data are
often collected in a particular season, this very seasonality
could be preserved in model design. While the traditional
modeling approach assumes that application of the data to
all seasons is reasonable, our work indicates that it is worth
writing a multiseason model in which the data are applied
to the correct season. Then, functional forms and parameter
values for other seasons can be motivated by the single-
season data but not tied to them. In our case, the seasonally
driven model, based on data that show the difference be-
tween the specialist functional response and the generalist
functional response (fig. 15.6 in Rohner et al. 2001), reveals
dynamic behavior that a simplified model, based on sum-
mer and winter pooled data (fig. 15.9 in Rohner et al.
2001), could not possibly contain. We conclude that when
data are available from only one season, one needs to care-
fully consider the possibility of seasonal behavior change
before applying the data to a nonseasonal model.
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Model Simplification

If seasonal data are available, then how does one analyze
the more complicated model structure that results? Explicit
numerical simulation is possible but limited; bifurcation
analysis is useful but tedious (Rinaldi et al. 1993; Gragnani
and Rinaldi 1995; Taylor et al. 2013). We demonstrated
that model simplification via averaging based on a sepa-
ration of timescales (Guggenheimer and Holmes 1983) is
extremely helpful. From equations (4), we see that rather
than pooling the annual data for a single functional re-
sponse, a better way is to use a linear combination between
the functional responses for each season. When intrinsic
dynamics are much faster than the environmental forcing,
successional-state dynamics can be used to simplify model
structure (Klausmeier 2010). In either case, we advocate that
modelers begin by formulating an explicitly seasonal model
and then let the data (e.g., different temporal scales) guide
the mathematical approach for model simplification.

Implications for Global Change Scenarios

Ecosystems at high latitudes and altitudes are particularly
exposed to the effects of global change. One typically asks
whether a species can move fast enough to keep up with
the range shift of its optimal habitat (Potapov and Lewis
2004; Berestycki et al. 2009; Zhou and Kot 2011; Leroux
et al. 2013).We focused on the local dynamics withoutmove-
ment. We found that when predation varies seasonally, an
increase in summer season length can lead to extinction of
the prey. It can also generate large limit cycles where mini-
mum densities of prey and predator can be very small, so
that stochastic extinction ismore likely. Hence, global change
endangers populations not only through habitat shift but also
through interaction dynamics. A different but related line of
research considers the explicit temperature dependence of in-
traspecific interactions and the effects of mean temperature
change on population dynamics (Amarasekare andCoutinho
2014). Combining our seasonal approach with more detailed
data on temperature-dependent processes would allow us to
explore not only the effects of mean temperature increases
but also the effects of increased variability, an important char-
acteristic of global change (Easterling et al. 2000; Schär et al.
2004; Allen et al. 2013).

In our simple model, only the predation behavior changes
seasonally, but other changes are conceivable and should
be included in future models. For example, longer growing
seasons can lead tomore severe droughts and decreasing re-
source productivity (Appenzeller 2015). Timing of repro-
duction, particularly for species with a single litter per year,
could also become important. Another crucial question is
how stochastically varying summer lengths affect the some-
what narrow range for Ts where bistability arises. Season

length can vary by about 8% (Suni et al. 2003), whereas the
range of bistability with the large limit cycle is about 2.5%
(fig. 5). We simulated the system by randomly choosing
summer length uniformly within 57% of a mean of Ts p
0:415 (app. B). These simulations show effects of both be-
haviors: stable coexistence and large limit cycles. Realiza-
tions of the stochastic model remain near these determinis-
tic states for some time (depending on stochastic effects and
initial conditions) but can also switch between these states at
random intervals (fig. B1, app. B). When the variation in Ts

is small, switching is infrequent; when it is large, realizations
spend very little time near the coexistence state and typically
show large oscillations.
We focused on a shift in functional response due to sea-

sonally varying availability of alternative prey. Other driv-
ers for behavioral changes include snow cover, human ac-
tivities, or disturbances that can facilitate or limit predator
access to prey (Ruediger et al. 2000; McKenzie et al. 2012;
Courbin et al. 2014). Our results demonstrate that such
changes can lead to structural changes in predator-prey dy-
namics that may be difficult to predict. Bistable dynamics
are especially challenging for ecosystem management since
early warning signs may not exist (Boerlijst et al. 2013).
However, few data sets actually measure critical behaviors
such as the functional response as a seasonally varying quan-
tity.We therefore argue that there is a need for further study
of seasonal effects, both empirically and theoretically. From
an empirical perspective, we call for data collection in mul-
tiple seasons or, at a minimum, the collection of as much
information as possible about season-specific behaviors. The-
oreticians can then build seasonal models that allow for a
thorough investigation of the effect of changing season length
and the identification of patterns that can be tested empirically.
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