Homework Hints

f(X) = prob (proportion of the time) that a stubborn individual becomes unstubborn

heighbour

$$S_{-1}X_{+1} \longrightarrow X_{-1} \longrightarrow S_{-1}$$
 $f(X_{+1})$
 $f(S_{-1})$

$$S_{-1} \times +_{1} \xrightarrow{\longrightarrow} S_{-1}$$

$$(1 - f(x+1))$$

$$+_{1} \xrightarrow{\longrightarrow} X_{-1}$$

$$\times_{-1} \times +_{1}$$

$$X_{-1} \times +_{1} \xrightarrow{\longrightarrow} X_{+1}$$

$$X_{-1} \times +_{1} \xrightarrow{\longrightarrow} X_{+1}$$

$$S_{-1}S_{+1} \longrightarrow S_{-1}$$
 $X_{+1}X_{+1} \longrightarrow X_{-1}$ It sometimes switching rate 13 a function of X, sometimes it's a function of S

Consider the two-dimensional autonomous GDE system

vector function

t as a parameter

Lecture #3

(3)
$$\begin{cases} \dot{x} = \frac{dx}{dt} = f(x,y) \\ \dot{y} = \frac{dy}{dt} = g(x,y) \end{cases}$$
 or
$$\frac{\Delta x}{\Delta t} = f(x,y) \\ \frac{\Delta y}{\Delta t} = g(x,y) \end{cases}$$
 (4)
Last time, we observed that we can evaluate $f(x,y) \neq g(x,y)$ at any point

plane, over a small interval st (eq. 4) $\Rightarrow \frac{1}{(\infty(t+1), y(t+1))}$ $\Rightarrow \frac{1}{(\infty(t+1), y(t+1))}$ $\Rightarrow x.$ Δx Δy

(x,y) i draw an arrow representing the movement of the solution in the phase

For small enough
$$\Delta t$$
 is repeating this procedure, we can trace the solution $(x(t), y(t))$ in the phase plane

Summary of Facts about Vector Functions (from Calculus) 1. The pair (x(t), y(t)) represents a curve in the (x,y) plane w

3. The vector
$$\frac{d\hat{x}}{dt} = \hat{x} = \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = (\hat{x}, \hat{y})$$
 has a well-defined geometric meaning. It is a vector that is tangent to a solution

2. $\vec{x}(t) = (x(t), y(t))$ also represents a position vector: a vector ω

tail at origin (0,0) & head at (x(t), y(t))

motion of the point
$$\vec{x}(t)$$
 along the curve.

4. The set of eq. 3 can be written in vector form $\vec{x} = \vec{F}(\vec{x})$ (5)

The vector function $\vec{F} = (f,g)$, assigns a vector to every

location \vec{x} in the plane, where \vec{x} is the position rector

. \hat{x} is a vector that points to (x,y)

f(x,y) = xy - yg(x,y) = xy - x

· = Steady

States

if the direction

field points away

囫

from steady

state =>

 $xy-y=0 \iff y=0 \text{ or } x=1$

(a) xy - x = 0 (b) x = 0 or y = 1

(0)

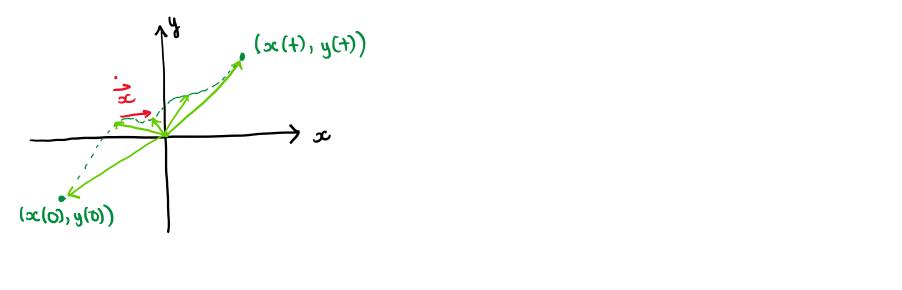
unstable SS

→ x y=0

at $\vec{x}(t)$. Its magnitude, $|\dot{x}(t)|$ represents the speed of

.
$$(x,y)$$
 is a point on the solution curve

& or is the velocity vector.



f(x,y) = 0

g(x,y) = 0

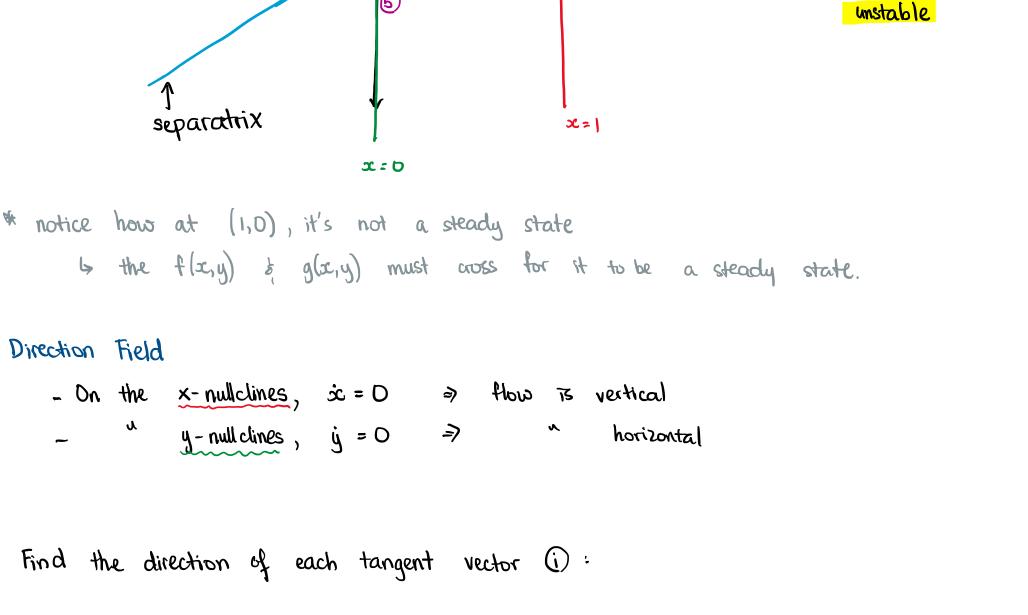
Find Nullclines

Examples

<⇒>

unstable

SS



$f(1+\epsilon,1) = (1+\epsilon)\cdot 1 - 1 = \epsilon > 0$ $q(1, 1+\varepsilon) = (1+\varepsilon)-1 = \varepsilon$ > D $f(1-\varepsilon,1) = (1-\varepsilon)\cdot 1 - 1 = -\varepsilon < 0$ $f(0,-\varepsilon) = --\varepsilon = \varepsilon > 0$

U vertical flow given by i or a

 $g(1,1-\varepsilon) = (1-\varepsilon)-1 = -\varepsilon$

(2) horizontal flows given by se or f

let 0< 8 << 1

At (1,1)

 $\xi = --\xi = \xi > 0$

 $(3) \qquad \xi (0, \varepsilon) = -\varepsilon \qquad = -\varepsilon < 0$

8 + (-8,0) = --8 = 8 >0

Examples

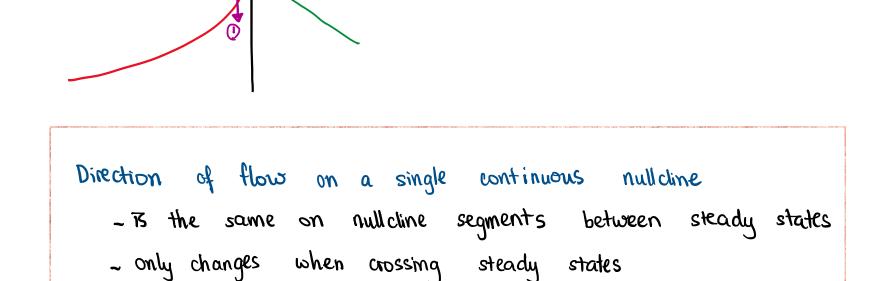
V_(0,0)

 $\dot{y} = x + y = q(x, y) \implies y = -\infty$

5) $\dot{x} = x + y^2 = f(x,y)$ $\Rightarrow x = -y^2$

* Flows are drastically different near the steady states

5 but are rather uniform otherwise,



Catalogue of 55 Behaviours

Unstable: flow moves away from steady state

Stable: ^ towards into Oscillation: flow spirals