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Abstract

A well-known object in classical Euclidean geometry is the circumcenter of a triangle, i.e., the point
that is equidistant from all vertices. The purpose of this paper is to provide a systematic study
of the circumcenter of sets containing finitely many points in Hilbert space. This is motivated by
recent works of Behling, Bello Cruz, and Santos on accelerated versions of the Douglas-Rachford
method. We present basic results and properties of the circumcenter. Several examples are provided
to illustrate the tightness of various assumptions.
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1 Introduction and standing assumption

Throughout this paper,
H is a real Hilbert space

with inner product (-, -) and induced norm || - ||. We denote by P(# ) the set of all nonempty subsets
of H containing finitely many elements. Assume that

S = {xl,xz,. . .,xm} € P(H)

The goal of this paper is to provide a systematic study of the circumcenter of S, i.e., of the (unique if it exists) point
in the affine hull of S that is equidistant all points in S. The classical case in trigonometry or Euclidean
geometry arises when m = 3 and H = IR% Recent applications of the circumcenter focus on the
present much more general case. Indeed, our work is motivated by recent works of Behling, Bello
Cruz, and Santos (see [4] and [5]) on accelerating the Douglas—-Rachford algorithm by employing the
circumcenter of intermediate iterates to solve certain best approximation problems.

The paper is organized as follows. Various auxiliary results are collected in to ease sub-
sequent proofs. Based on the circumcenter, we introduce our main actor, the circumcenter operator,
in . Explicit formulae for the circumcenter are provided in Sections 4 and 5 while
records some basic properties. In , we turn to the behaviour of the circumcenter when se-
quences of sets are considered. deals with the case when the set contains three points which
yields particularly pleasing results. The importance of the circumcenter in the algorithmic work of
Behling et al. is explained in . In the final , we return to more classical roots of the

circumcenter and discuss formulae involving cross products when H = R3.
The notation employed is standard and largely follows [2].
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2 Auxiliary results

In this section, we provide various results that will be useful in the sequel.

2.1 Affine sets

Recall that a nonempty subset S of H is an affine subspace of H if (Vp € R) pS+ (1 —p)S = S; moreover,
the smallest affine subspace containing S is the affine hull of S, denoted aff S.

Fact 2.1 [11, page 4] Let S C ‘H be an affine subspace and let a € H. Then the translate of S by a, which is
defined by

S+a={x+a|xeS},
is another affine subspace.

Definition 2.2 An affine subspace S is said to be parallel to an affine subspace M if S = M + a for some
aeH.

Fact 2.3 [11, Theorem 1.2] Every affine subspace S is parallel to a unique linear subspace L, which is given by
(VyeS) L=S—y=S-S.

Definition 2.4 [11, page 4] The dimension of an affine subspace is defined to be the dimension of the
linear subspace parallel to it.

Fact2.5 [11, page 7] Let x1,...,x; € H. Then
m
aff{x1,...,xn} = {/\1X1 4+ AuXm LA, A € Rand Z/\i = 1}.
i=1

Some algebraic calculations and yield the next result.

Lemma 2.6 Let x1, ..., %, € H. Then for every iy € {2,...,m}, we have

aff{x1,...,xm} = x1 +span{x, —x1,..., Xy — X1}

= Xj, +span{x1 — Xigs e+« s Xig—1 — Xigs Xig+1 — Xigs -+« r Xm — xio}.

Definition 2.7 [11, page 6] Let xo, x1, ..., x,y € H. The m 41 vectors xo, x1, . . ., X, are said to be affinely
independent if aff{xo, x1, ..., X, } is m-dimensional.

Fact 2.8 [11, page 7] Let x1,x2,...,x,m € H. Then x1,x3,...,xy are affinely independent if and only if
X2 — X1,...,Xm — X1 are linearly independent.

Lemma 2.9 Let x1, ..., Xy, be affinely independent vectors in H. Let p € aff{xy,..., Xy }. Then there exists a
unique vector (@ -+ ) € R™ with Y"1 a; = 1 such that

p=a1x1+ -+ Xy
The following lemma will be useful later.

Lemma 2.10 Let
0= {(xl,. e X1, Xm) € H™ | X1,..., Xm—1, Xm are affinely independent}.

Then O is open.



Proof. Assume to the contrary that there exist (x1,...,%,_1,%,) € O such that for every k € IN \
0}, there exist x(k),...,x(k)_ ,x,(,f) €B((x1,...,Xm-1,%m); L) such thatx(k),... ) xﬁ,’f) are affinel
1 m—1 k 1 y

7 m_ll
dependent. By , for every k, there exists b(¥) = ( ,ng), ,ng), e, IBES)_ 1) € R™1 < {0} such that
B =)+ ) () — ) =0 @1
Without loss of generality we assume
m—1
(vkeN~ {0} PPIP= Y ()7 =1, 22)

i=1

and there exists b = (B1, ..., Bm_1) € R" ! such that

lim (B,..., 8% ) = lim b® = = (By,..., Bu_1).

k—o0 k—ro0
Let k go to infinity in , we get
IBI> = B+ + Br1 = 1,

which yields that (B4, ..., Bm-1) # 0.
Let k go to infinity in , we obtain

Bi(x2 —x1) + -+ Bu—1(xm —x1) =0,

which means that x, — x1,...,x,; — x1 are linearly dependent. By , it contradicts with the
assumption that xy, ..., x,,_1, X, are affinely independent. Hence O is indeed an open set. |

Fact 2.11 [7, Theorem 9.26] Let V be an affine subset of H, say V. = M + v, where M is a linear subspace of
Handv € V. Let x € H and yo € H. Then the following statements are equivalent:

(i) yo = Py(x).
(ii) x — o € ML,
(iii)) (x —yo,y—v) =0 forallyeV.
Moreover,

Py(x+e)=Py(x) forallx € X,e € M+,

2.2 The Gram matrix

Definition 2.12 Letay,...,a, € H. Then

a1 ||? <ﬂ1/ﬂ22> e (a1, )
(az,a1)  laol|* -+ (4o, am)

Glay,...,ay) = ' } .
(A, 01)  {am,@2) -+ |am|?

is called the Gram matrix of a4, ..., a.

Fact 2.13 [8, Theorem 6.5-1] Let ay, ..., a,, € H. Then the Gram matrix G(ay, ..., ay) is invertible if and
only if the vectors ay, . . ., a, are linearly independent.



Remark 2.14 Let x, y, z be affinely independent vectors in R3. Seta = y—xand b = z — x. Then, by
and , |lal*[[o]]* — (a,b)* # 0 and ||a]| # 0, |[b]| # 0.

Proposition 2.15 Let x1,..., %, € H. Then for every k € {2,...,m}, we have

det (G(xz — X1, Xy — xl)) = det (G(x1 — Xgyeoo s X1 — Xpy X1 — Xky e o) Xy — xk))

Proof. By , G(x1 — Xp, o vy X1 — Xj Xyl — Xy e v oy Xg — Xg) 18
(X1 =X, X1 — X)X = X X1 — X)) (X1 — X X1 — Xk) e (X0 — X, Xow — Xg)
(xz — Xp, X1 — xk> e <x2 — Xk Xg—1 — xk> <X2 — Xy Xk+1 — xk> s (xz — Xk Xm — Xk>
(k1 — X1 —x%) 0 (N1 — X Xke1 — Xk) (Y1 — Xk X1 — Xk) o c (Y1 — Xk X — Xk)
(X1 — X X1 — X)Xk — X Xk—1 — Xk) (kg1 — X Xkp1 — Xk) oo (X1 — Xpo X — Xg)
(Xm — X, 01 — X)X = Xp X1 — X)X — Xp X — X)) e (X — X, X — Xg)
(2.3)
In , we perform the following elementary row and column operations: Foreveryi € {2,3,...,m —
1}, subtract the 1% row from the i row, and then subtract the 1t column from the it column. Then
multiply 1% row and 1% column by —1, respectively. It follows that the determinant of equals the
determinant of
<xk — X1, Xk — xl> s <xk — X1, Xk—1 — x1> <xk — X1, Xk+1 — x1> s <xk — X1, Xm — x1>
(X2 —x1, % —x1) -0 (x2— X, X1 —Xx1) (X2 — XX —X1) o (X2 — X, X — X)
<xk—1 — X1, X — x1> T <xk—1 — X1, Xk—1 — X1> <xk—1 — X1, Xk4+1 — X1> ce <xk—1 — X1, Xm — X1>
(X1 —x1, X —x1) oo (X1 — X1, X1 — X1) (Xkp1 — X X1 — X1) o0 (Xgp1r — X1, X — X7)
(Xm —x1, % —x1) -0 (Xm =X, X1 —X1) (X — XL X1 — X1) 0 (Xm — X1, X — X1)
(2.4)
In , we interchange i row and (i+ 1)th successively for i = 1,...,k — 2. In addition, we inter-

change j column and (j + 1)™ column successively for j = 1,...,k — 2. Then the resulting matrix is
just G(x2 — x1,..., X, — X1). Because the number of interchange we performed is even, the determi-
nant is unchanged. Therefore, we obtain

det (G(x1 — Xgyeo oy Xpo1 — Xy X1 — Xy e o e X — xk)> = det <G(x2 — X1, X — xl))
as claimed. ]

Fact 2.16 [12, page 16] Let S = {A € R™ " | A is invertible }. Then the mapping S — S : A — A~ lis
continuous.

Fact 2.17 (Cramer’s rule) [10, page 476] If A € R™ " is invertible and Ax = b, then for every i €
{1,...,n}, we have
det(Ai)
Xi = /
det(A)

where A; = [As1|- - |Asii1|b|Asiv1| - |Axn). Thatis, A; is identical to A except that column A, ; has
been replaced by b.



Corollary 2.18 Let {x1,..., X} C Hwithxy,..., Xy being affinely independent. Let ((xgk), ceey x,(f))) -
H™ such that

lim(xgk),...,x,gf)) = (X1, , Xm).

k—rc0

Then
Glxg —x1,...,%m —x1) ' = klgg G —x®, . x® — xy-1,
Proof. By , we know there exists K € IN such that
(Vk > K) xgk), .., x,(é{ ) are affinely independent.
Using , we know
X2 — X1,...,Xm — X1 are linearly independent,
and
(Vk > K) xék) — xik) ,e .,x,(,f ) xgk) are linearly independent.

Hence tells us that G(xp — x1,..., %, — x1) ' and (Vk > K) G(xgk) - x%k), cxd xgk))*1
exist. Therefore, the required result follows directly from . [ |

3 The circumcenter

Before we are able to define the main actor in this paper, the circumcenter operator, we shall require a
few more results.

Proposition 3.1 Let p,x,y € H, and set U = aff{x,y}. Then the following are equivalent:

@ llp =l = llp =yl

(i) (p—xy—x) =3y —x|*

(iii) Pu(p) = 52

(iv) pe P+ (U-U't
Proof. It is clear that

lp—xll =llp =yl <= llp— x> = lI(p — %) + (x = )|

= llp—xlP=lp—xP+2(p—xx—y) + x -yl

1
= (p-xy—x)=Sly—x|*

Hence we get (1) <
Notice xzﬂ € U. Now

Y Pu(p) =) (p- Y

,u—x)=0 (by(i) < in )

xX+y

<= (Va € R) (p—T,(JH—zx(y—x))—x) =0 (byU = x+span{y —x})



x+y

—(p— 5 ,y—x) =0
x_
- x-"Fy—x) =0
x_
—(p—x,y— )+<Ty,y—x>:0

1
={p-xy—x)==lly—x|?
2

which imply that &

On the other hand, by (i) < (ii) in and by ,
X+ X+
2y = Py(p) <:>p—Ty e(U-u’t
—=pc xTW+(U—U)l,

which yield that &
In conclusion, we obtain (i) & & & . |

Corollary 3.2 Let x1,..., Xy bein H. Let p € H. Then
(p—x1,00—x1) = 3]x2 — w12

lp—xill == llp—xmall = |lp — xull =
(P — X1, Xm—-1 — x1>

(p —x1,20m — 21) = 3 [l2tm — 212
Proof. SetI ={2,...,m —1,m},and leti € I. In , substitute x = x1 and y = x; and use
& (ii). Then we get ||p — x1|| = [|p — xi|| <= (p — x1, % — x1) = 3|x; — x1]|%. Hence
, 1 2
(Viel) lp—xl=lp-xl = (p—x,x-x)=5lx-xal
Therefore, the proof is complete. |

The next result plays an essential role in the definition of the circumcenter operator.

Proposition 3.3 Set S = {x1,x2,..., %y}, where m € N \ {0} and x1,xz, ..., X,y are in H. Then there is at
most one point p € H satisfying the following two conditions:

(i) p € aff(S), and

(i) {llp—sl|seS}isasingleton: [|p — x| = [[p = x2f| = --- = [[p = 2]
Proof. Assume both of p, g satisfy conditions (i) and (ii).

By assumption and ,p,q € aff(S) = aff{x1,...,xm} = x1 +span{xy — x1,..., X, — x1}.
Thus p —q € span{xy — xq,..., %, — x1}, and so there exist ay,..., 4,1 € R such that p —q =
Y Va;(xi 1 — x1). Using the above and using the condition (ii) satisfied by both of p

and g, we observe that for every i € [ = {2,...,m}, we have

1
(p—x1,%; —x1) = §Hxi —x1Hz and

1
(q—x1,x—x1) = §||xi — x|



Subtracting the above equalities, we get

(Viel) (p—q,xi—x1)=0.
Multiplying &; on both sides of the corresponding i equality and then summing up the m — 1 equal-
ities, we get

m—1

0=(p—q ¥ ailxii—x1)) = (p—a,p—q) = |p—ql
=1

1

Hence p = g, which implies that if such point satisfying conditions (i) and (ii) exists, then it must be
unique. |

We are now in a position to define the circumcenter operator.

Definition 3.4 (circumcenter) The circumcenter operator is

CC: P(H) —» HU{D}: S s {p, ifpe af.f(S) and {||p —s|| | s € S} is a singleton;
@, otherwise.

The circumradius operator is

|ICC(S) —s]||, ifCC(S) € Hands € S;

CR: P(H) - R: S )
+oo, if CC(S) = @.

In particular, when CC(S) € H, thatis, CC(S) # o, we say that the circumcenter of S exists and we
call CC(S) the circumcenter of S and CR(S) the circumradius of S.

Note that in the above, we have already proved that for every S € P(#H), there is
at most one point p € aff(S) such that {||p —s|| | s € S} is a singleton, so the notions are well defined.
Hence we obtain the following alternative expression of the circumcenter operator:

Remark 3.5 Let S € P(H). Then the CC(S) is either @ or the unique point p € ‘H such that
(i) p € aff(S) and,
() {llp —sll | s € S} is a singleton.

Example 3.6 Let x1, x, be in H. Then

X1+ X2

CC({x1,x2}) = B

4 Explicit formulae for the circumcenter
We continue to assume that
me N~ {0}, xp,...,xyarevectorsin’H, and S ={xy,...,xn}.

If S is a singleton, say S = {x1 }, then, by , we clearly have CC(S) = x;. So in this section,
to deduce the formula of CC(S), we always assume that

m > 2.

We are ready for an explicit formula for the circumcenter.
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Theorem 4.1 Suppose that x1, ..., Xy, are affinely independent. Then CC(S) € H, which means that CC(S)
is the unique point satisfying the following two conditions:

(i) CC(S) € aff(S), and
(i) {||CC(S) —s]| | s € S} is a singleton.

Moreover,
. 2 — 21|
CC(S):xl—i—i(xz—xb...,xm—xl)G(xg—xl,...,xm—xQ’l : ,
[[2m — 21|
where G(xy — X1, ..., Xpm—1 — X1, Xm — X1) is the Gram matrix defined in
G(xa2 — X1, 0, X1 — X1, X — X1)
|2 — x7|? (g —xp,x3—x1)  --- (X2 — X1, Xy — X1)
(X1 —x1,% —x1) (X1 — X1, X3 —X1) -0 {Xpo1 — X1, Xm — X1)
(Xm —x1,x2—x1) (X —x1,X3 —x1) - [ xm — x1]|?
Proof. By assumption and , we get that x — x1,...,x, — x1 are linearly independent. Then by
, the Gram matrix G(x; — x1, X3 — X1,..., Xy — Xx1) is invertible. Set
a0 [[x2 — x1||§
a0 1 | lxs =
C | =56t — s x = x) : ,
Np—1 ||xm - x1||2
and
p=x1+ag(x2—x1) +ax(xz —2x1) 4+ a1 (xy — X1).
By the definition of G(x2 — x1, X3 — X1, ..., X, — x1) and by the definitions of (oq ny - zxm,l)T and
p, we obtain the equivalences
o |2 — lez
1L%) 1| [lxs — x|
Gl —x,x3 =2y, xm—x1) | | =35 :
A1 [12m — x1|?

(a1 (2 — 1) 4 - + 1 (X — x1), %2 — 1) = 1|22 — 312

(a1(x2 = x1) + -+ am1(Xm — x1), Xm — x1) = %me - x1H2

(p—x1,x2 —x1) = 32 — x|

(P = x1, 00 — x1) = 3|20 — 21|~

Hence by , we know that p satisfy condition (ii). In addition, it is clear that p = x; +
ay(x2 —x1) +aa(x3 —x1) + - -+ a1 (xm — x1) € x1 +span{xz — x1,..., %, — x1} = aff(S), which is
just the condition (i). Hence the point satisfying conditions (i) and (ii) exists.

Moreover, by , if the point exists, then it must be unique. n
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Lemma 4.2 Suppose that CC(S) € H, and let K C S such that aff(K) = aff(S). Then
CC(S) = CC(K).
Proof. By assumption, CC(S) € H, that is:
(i) CC(S) € aff(S), and
(i) {||[CC(S) —s]| | s € S} is a singleton.

Because K C S, we get {||CC(S) —s|| | s € K} is a singleton, by (ii). Since aff(K) = aff(S), by (i), the
point CC(S) satisfy

(I) CC(S) € aff(K), and
D) {||CC(S) —u|l | u € K} is a singleton.
Replacing S in by K and combining with ,weknow CC(K) =CC(S). }

Corollary 4.3 Suppose that CC(S) € H. Let xj,, ..., x;, be elements of S such that x1,x;,, ..., x;, are affinely
independent, and set K = {x1,x;,, ..., x;, }. Furthermore, assume that aff(K) = aff(S). Then

1 I, —
CC(S) = CC(K) = X1+ E(xl-l — X1, X — xl)G(xl-l — X100, Xi, — xl)_l
i, — 212
Proof. By , X1, Xi,, ..., Xj, are affinely independent implies that CC(K) # @, and
. i, — 2112
CC(K) =x1 + E(xil — X1, %, —x1)G(x, — X1, X5, — xl)’1 :
[, — x1 |
Then the desired result follows from . |

Lemma 4.4 Let x;, ..., x;, be elements of S, and set K = {x1,x;,,...,x;,}. Then

aff(K) = aff(S) and x1,x;,,...,x;, are affinely independent.
<= Xj, — X1,...,%j, — X1 is a basis of span{x; — x1,..., X, — X1}

Proof. Indeed,

Xi, — X1,...,%;, — x1 is a basis of span{x, — x1,..., %, — x1}
{xi1 — X1,...,%;, — x1 are linearly independent, and

span{x; — x1,...,x;, — X1} =span{xy — xq,..., X, — X1}

X1, X, - .., X;, are affinely independent, and
x1 +span{x;, —x1,...,%;, —x1} = x1 +span{xp — x1,..., Xy — X1}

X1, X, - .., X;, are affinely independent, and
aff(K) = aff(S),

which completes the proof. |



5 Additional formulae for the circumcenter
Upholding the assumptions of , we assume additionally that

x1,...,Xxn are affinely independent.
By ,CC(S) € H. Let

k € {2,3,...,m} be arbitrary but fixed.

By again, we know that
CC(S) =x1+ar(xo—x1) +an(xs—x1) + -+ + apy_1(xm — x1) (5.1a)
=(1- Zz’ijloci)xl Foaqxy+ o K1 X, (5.1b)
where
a1 |22 — xl”;
"2 = %G(xz—xl,xg—xl,...,xm—xl)_l Hxa_:XlH ) (5.2)
I — 1P
By the symmetry of the positions of the points x1,..., Xk, ..., X, in S in and by

, we also get

CC(S) = xx+ Br(x1 — xx) + -+ -+ Bro1 (k-1 — %) + Br(Xp1 — xx) + -+ -+ Bu—1(xm — xx)  (5.32)

m—1

=Brx1+ -+ Proaxior + (1= Y Bi)xi + BiXis1 + - + Bru—1Xm, (5.3b)
i=1
where
e — xe|?
P :
B2 1 1| ke — xi]]?
) = —G(X] = Xpy oo X1 — Xpoy Xpes1 — Xpy oy Xy — Xg) 1 I 1_ kHZ (5.4)
: 2 [[xk+1 — x|
Bm-1 :
m — x|
Proposition 5.1 The following equalities hold:
(1-Y" ;) = B1, (coefficient of x1) (5.5)
a1 = (1— Y Bi), (coefficient of xy) (5.6)
(Vl € {2,. k= 1}) Ki_1 = ‘Bi and (V] € {k,k-I— 1,...,m— 1}) Kj = ﬁ] (5.7)

Proof. Recall that at the beginning of this section we assumed xj, ..., x,, are affinely independent.
Combining the equations & and , we get the required results. |

To simplify the statements, we use the following abbreviations.
A= G(xg—x1, .., X — X1, X — X1),

B= G(x1 — Xg,« v+, Xg1 — Xk, Xps1 — Xks e« X — Xg),
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and the determinant of matrix A (by , it is also the determinant of matrix B) is denoted
by:

0 = det(A).
We denote the two column vectors 4, b respectively by:
a=(lrz—al? - la-xl® o -l
b= (llxr—xell® oo lxveer =2l e — 2> om — xl?)T

For every M € R"*", and for every j € {1,2,...,n},
we denote the /' column of the matrix M as M, ;.
In turn, foreveryi € {1,...,m —1},
Ai = [Aaal - AcialalAvial - [Acm1),
and
Bi = [Bia| - |Byi-1|b|Byiva| - - - [Bim—1]-

That is, A; is identical to A except that column A, ; has been replaced by 4 and B; is identical to B
except that column B, ; has been replaced by b.

Lemma 5.2 The following statements hold:

(i) (a1 -apy_1)" defined in is the unique solution of the nonsingular system Ay = }a where y is the
unknown variable. In consequence, for everyi € {1,...,m —1},

. det(Ai)
n; = 25

(i) (B1---Bm-1)" defined in is the unique solution of the nonsingular system By = 1b where y is the
unknown variable. In consequence, for every i € {1,...,m —1},

o det(Bi)
bi= 25

Proof. By assumption, x, ..., x,, are affinely independent, and by , we know det(B) =
det(A) =6 #0.

: By definition of (a1 ay_1)",

(a1 apy_q)" = %A‘la.

Clearly we know it is the unique solution of the nonsingular system Ay = }a. Hence the desired result
follows directly from the , the Cramer Rule.

: Using the same method of proof of (i), we can prove (ii) . |

Using , and the equalities , and , we readily obtain the follow-

ing result.

11



Corollary 5.3 Suppose that x1, ..., x,, are affinely independent. Then
CC(S) = (1= i)y + a2+ - + a1 X,
where (Vi € {1,...,m —1}) a; = 25 det(A;). Moreover,
m—1 1 m—1

1
1-— 1221 i = 25 det(Bl) ap_1=1-— Z ﬁdet(B )

idet(B,‘) and (Vje{kk+1,...,m—1}) a =

(Vi€ 2. k=1}) a1=5

6 Basic properties of the circumcenter

1
% det

(Bj).

In this section we collect some fundamental properties of the circumcenter operator. Recall that

me N~ {0}, x1,...,xyarevectorsin’H, and S ={xy,...,xn}.

Proposition 6.1 (scalar multiples) Let A € R\ {0}. Then CC(AS) = ACC(S).
Proof. Let p € H. By ,
ff(S
p=cC(s) e | P €2 o
{llp —sl| | s € S} is a singleton

Ap € aff(AS)
{|[Ap — As|| | As € AS} is a singleton

<= Ap = CC(AS),
and the result follows.
The next example below illustrates that we had to exclude the case A = 0 in
Example 6.2 Suppose that X = R and that S = {0, —1,1}. Then
CC(0-S) ={0} # @ =0-CC(S).
Proposition 6.3 (translations) Let y € H. Then CC(S +y) = CC(S) +y.
Proof. Let p € H. By ,

m m
peaff{xl,...,xm}<:>(EI/\l,...,)LmG]Rwith Z)Hzl) :Z
i=1 i=1

m m

— (M, AmweRwith Y A;=1) p+y=) A

i=1 i=1

< ptycaffivy+y,..., xu+y}
that is

p € aff(S) <= p+y € aff(S+y).
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By and , we have

p € aff(S)

=CC(S) e H <=
’ ) {{Hp—sH | s € S} is a singleton

p+y € aff(S+vy)
p+y)—(+y)ll|s+y € S+y}isasingleton

<= p+y=CC(S+y) € H.

Moreover, because @ = & + y, the proof is complete. |

7 Circumcenters of sequences of sets
We uphold the assumptions that
meINN{0}, xi,...,x,arevectorsin{, and S={xq,..., x4}

In this section, we explore the convergence of the circumcenter operator over a sequence of sets.

Theorem 7.1 Suppose that CC(S) € H. Then the following hold:

(i) Set t = dim (span{xz — X1, X — x1}>, and let S = {x1,xi,...,x,} € S be such that x; —

X1,...,Xj, — X1 is a basis of span{xp — x1,..., X,y — X1 }. Furthermore, let ((xik),xflk), .. ,xlgtk))>k ) C
>

HiH withlimkﬁw(xgk),xl(lk), . xl(tk)) (x1,%, .., %), and set (Vk > 1) S®) = {x :xi(tk)}.

Then there exist N € N such that for every k > N, CC(S®)) € H and

lim cc(sW) = cc(S) = cc(s).
—00

(ii) Supposethat xq,...,Xyu—1, X areaffinely independent, and let <(x§k), .. x(k) x,(,f)))k> C H™ satisfy

m—1’

limk%m(xgk),...,xf,le,x,gf)) = (X1, , Xm—1,Xm). Set (Vk > 1) Sk — {x1 S, X% xm } Then

mflf

lim CC(SW) = cc(s).

k—o0

Proof. (i): Let I be the cardinality of the set S. Assume first that/ = 1. Then t = 0, and S = {x1}. Let

(xgk))kzl C H satisfy limy_,q xgk) = x1. By , we know CC<{x§k)}) = xgk) and CC({x1}) =
x1. Hence

lim CC(S®) = lim x{¥ = x, = cC(s).

k—oc0 k—o0
Now assume that [ > 2. By and , We obtain
o I, 1
CC(S) :CC(S) :x1+§(xi1 —xl,...,xit—x1)G(xil —xl,...,xit—x1)_1 . (7.1)
Hxit - X1 HZ
Using the assumptions and the , we know that there exists N € IN such that

(Vk > N) x%k),x(k) L. .,xl(tk) are affinely independent.

1
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By , we know (k > N) CC(S®)) € H. Moreover, for every k > N,

cc(s®)y = xgk) + f(x(k) - x§k),...,x(k) - xgk))G(x(k) - xgk), - xgk))’1

1t 1 1t

Comparing with and using , we obtain

lim CC(s®) = cC(S) = CC(S).

k— 00

): Letxy, ..., Xm—1,Xm € H be affinely independent. Then t = m — 1 and S = S. Substitute the S
and S® in part (i) by our S and S®*) respectively. Then we obtain

lim CC(sW) = cc(S)

k—o0

and the proof is complete. |
Corollary 7.2 The mapping
Y. H" - HU{D}: (x1,...,%m) = CC({x1,..., Xm}).
is continuous at every point (x1,...,Xy) € H™ where x1,. .., Xy, is affinely independent.
Proof. This follows directly from . n

Let us record the doubleton case explicitly.

Proposition 7.3 Suppose that m = 2. Let ((xgk),xgk))) o1 © H? satisfy limkﬁw(xgk),xgk)) = (x1,x2). Then

lim CC({x)",2,7}) = CC({x1, x2)).

Proof. Indeed, we deduce from that
(k) (k)
. k) () _ oy X1 TX X1+ X
lim CC({xf?, 1)) = lim T 772 = T o ({xy, 1))
and the result follows. [ |
The following example illustrates that the assumption that “m = 2” in cannot be

replaced by “the cardinality of S is 2”.
Example 7.4 Suppose that H = R?, that m = 3, and that S = {x,xp, x3} with x; = (=1,0), x = x3 =

(1,0). Then there exists ((xgk),xgk),xék) Ni>1 € H3 such that limk%oo(xgk),xék) ,xék)) = (x1,x2,x3) and

lim CC({x, x{V, x}) £ cc(s).

k—o0

Proof. Foreveryk > 1,let (x}, x", x{") = ((=1,0),(1,0), (1+},0)) € #>. Thenlimy o (x{", 50", x{") =

(x1, x2, x3). Moreover, by , we know that (Vk > 1), CC(S(k)) = @&, since there is no point
in IR? which has equal distance to all of the three points. On the other hand, by again,
we know CC(S) = (0,0) € H. Hence limy_,., CC({x{", x{", x"}) = & # (0,0) = cC(s). |

14



The following question now naturally arises:

Question 7.5 Suppose that CC({x1,x2,x3}) € H, and let ((xgk),xgk),xék)))bl C H3 be such that

limy oo (xgk), xgk), xék)) = (x1,x2, x3). Is it true that the implication

(vk>1) cc({x, 2 ) ey = lim cc({xl?, 29 x¥y = cc({xy, 20, x3})
—00

holds?

When x1, x2, x3 are affinely independent, then gives us an affirmative answer. How-
ever, the answer is negative if x1, x2, x3 are not assumed to be affinely independent.

Example 7.6 Suppose that H = R?> and S = {x1,x2,x3} with x; = (=2,0), x2 = x3 = (2,0). Then

there exists a sequence ((xgk), xék), xék))) 1 C 3 such that

(i) limkﬁm(xgk),xék),xgk)) = (x1,x2,x3),

G) (vk>1) cc({x®,x¥,xP1) € R?, and
(i) limy_,o CC({x®, 2, {01y £ CC ().
Proof. By , we know that CC(S) = (0,0) € H. Set
(Vk>1) sk = {x%k),xék),xék)} = {(—2:0)1 (2,0), (2 %r 4lk) }
: In this case,
tim (), %57, ) = lim ((-2,0),2,0), (2~ }, %))

k—ro0
=((~2,0),(2,0),(2,0))

=(x1, X2, x3).

: It is clear that for every k > 1, the vectors (—2,0),(2,0), (2 — %, ﬁ) are not colinear, that is,
(—=2,0),(2,0),(2— %, ﬁ) are affinely independent. By , we see that

(vk>1) cc({x?,x,x{"}) e RZ.
: Let k > 1. By definition of CC(5)) and (ii), we deduce that CC(5®)) = ( gk), pgk)) € R? and that
lce(s®) - )| = flec(s®) - x| = flcc(s®) - 9|

Because CC(S%)) must be in the intersection of the perpendicular bisector of xgk) = (=2,0), xék) =

(2,0) and the perpendicular bisector of xék) = (2,0), xék) = (2— 1, 4z), we obtain

¢ ‘ o 2+2-1
pi’ =0 and py =4(pl" - =) + &
thus,
k k
cc(s®)y = (pM, py = (0, -8+ 2+ ). (7.3)

15



(Alternatively, we can use the formula in to get ). Therefore,

lim CC(SW) = lim (0, -8+ 2 + &) = (0, —8) # (0,0) = CC(S),

k—o0 k—oc0
and the proof is complete.

As the picture below shows, (Vk > 1) xék) = (2— }, ;%) converges to x3 = (2,0) along the purple
line L = {(x,y) € R? |y = —1(x —2)}. In fact, CC(S®) is just the intersection point between the two
lines M; and M, where M; is the perpendicular bisector between the points x; and x,, and Mo is the

(k)

perpendicular bisector between the points x5 and x».

1
|
y 1
1
st M
1
!
]
L 2 I
1
1
o1 o 3
6 4 -2 ) I 2%5 4 6 3
1
1
1
,Z I
1
1
1
_4 I
V o cli
1
-6
!
1]

Figure 1: Continuity of circumcenter operator may fail even when (Vk > 1) CC(S®)) € H.

8 The circumcenter of three points

In this section, we study the circumcenter of a set containing three points. We will give a characteri-
zation of the existence of circumcenter of three pairwise distinct points. In addition, we shall provide
asymmetric and symmetric formulae.

Theorem 8.1 Suppose that S = {x,y,z} € P(H) and that | = 3 is the cardinality of S. Then x,y,z are
affinely independent if and only if CC(S) € H.

Proof. 1f S is affinely independent, then CC(S) € H by
To prove the converse implication, suppose that CC(S) € H, i.e.,

(i) CC(S) € aff{x,y,z} ,and
(i) [[CC(S) —x] = [ICC(S) —y| = [ICC(S) —=|-
We argue by contradiction and thus assume that the elements of S are affinely dependent:

dim(span{S — x}) = dim(span{y — x,z — x}) < 1.

16



Note that y — x # 0 and z — x # 0. Set
U=x+span{y — x,z —x} = x +span{y — x} = x + span{z — x}.
Combining with , we get
U = aff{x,y,z} = aff{x,y} = aff{x, z}. (8.1)
By definition of CC(S), we have

CC(S) e aff{x,y} = U and | CC(S)— x| =|CC(S)—yl, (8.2)
and
CC(S) € aff{x,z} = U and ||CC(S)— x| =|CC(S)—z|. (8.3)
Now using (i) < in and using , we get
_ _ Xty
cC(s) = Pu(CC(S)) -2
Similarly, using (i) < in and using , we can also get
X+z
cc(s) = PU(CC(S)) ==
Therefore,
Y _ces) =Ry =y,
2 2
which contradicts the assumption that | = 3. The proof is complete. |

In contrast, when the cardinality of S is 4, then
CC(S) € H # elements of S are affinely independent

as the following example demonstrates. Thus the characterization of the existence of circumcenter in
is generally not true when we consider [ > 3 pairwise distinct points.

Example 8.2 Suppose that H = RR?, that m = 4, and S = {x1,x2,x3,x4}, where x; = (0,0), xp =
(4,0), x3 = (0,4), and x4 = (4,4) (see )- Then x1, x2, x3, x4 are pairwise distinct and affinely
dependent, yet CC(S) = (2,2).

Figure 2: Circumcenter of the four affinely dependent points from
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In above, where we presented the formula for CC(S), we gave special importance to
the first point x; in S. We now provide some longer yet symmetric formulae for CC(S).

Remark 8.3 Suppose that S = {x,y,z} and that ] = 3 is the cardinality of S. Assume furthermore that
CC(S) € H, i.e., there is an unique point CC(S) satisfying

(i) CC(S) € aff{x,y,z} and
(ii) [[CC(S) = x[| = [CC(S) —yll = [ICC(S) — z|.

By , the vectors x, y, z must be affinely independent. From we obtain
T N B et I ek AN R
cets) =+ -z -0 (PO V) (U0

(ly = x[*1z = x| = llz = x|*{y — x, 2 — x))(y — )
2(|ly = x[?llz = %[> = (y — x,2 = x)?)

(ly = xIPllz = x| = lly = x[I*¢y — x,z = 1)) (z — x)

2(|ly = x[?llz = %[> = (y — x,2 = x)?)

:_x—|—

+

1
= E(|‘y_z||2<x —Z,X —y>x+ HX_ZH2<]/_Z/y— x>y+ ||x_yH2<Z—X,Z—y>Z>,

where K; = 2(||ly — x|]?||z — x||? — {y — x,z — x)?).
Similarly,

ce(s) = - (Iy = 2Pl =2, x = y)x-+ x = 22 = 2y = x)y + |~ yIPlz - 3,2 = y)z),
where Kz = 2(|x = yl|z = y|2 = (x =y, = )?) and

ce(s) = - (Iy = 2P =2, x = y)x-+ x = 22 = 2y = x)y + |~ vz — 3,2 = y)z),
where Ky = 2(}x = z||ly — z|* = (x— z,y — 2)?).

In view of (the uniqueness of the circumcenter), we now average the three formulae
from above to obtain the following symmetric formula for p:

1
cc(s) = 2 (ly—zlP(x =z x —y)x + |x =2y —zy = x)y + |x —y|2z = x,z = y)z),

_ 1 1 1 1
where K = ¢ ( e e T e A o d P e o Hx—zHZny—z|\2—<x—z,y—z>2)' In fact,
yields Kl = K2 = Kg.

We now summarize the above discussion so far in the following two pleasing main results.

Theorem 8.4 (nonsymmetric formula for the circumcenter) Suppose that S = {x,y,z} and denote the
cardinality of S by 1. Then exactly one of the following cases occurs:

(i) I =1and CC(S) = x.
(i) I =2,say S = {u,v}, where u,v € Sand u # v, and CC(S) = ”T“’
(iif) | = 3 and exactly one of the following two cases occurs:
(@) x,y,zare affinely independent; equivalently, ||y — x||||z — x|| > (y — x,z — x), and

x—zx -yt =zl y —zy -y + [ —ylPE-xz—y)z
2(ly = *IPTz - 2P = (v — %,z — x)%)

CC(S) — Hy_ZH2<
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(b) x,y,z are affinely dependent; equivalently, ||y — x||||z — x|| = (y — x,z — x), and CC(S) =

Theorem 8.5 (symmetric formula of the circumcenter) Suppose that S = {x,y,z} and denote the cardi-
nality of S by 1. Then exactly one of the following cases occurs:

(i) I=1and CC(S)=x=y=2z= x+y+z.

- vl le—zlly+ vz
(i) I'=2and CC(S) = “Rmymizt =] -

(111) I = 3, consider K = *(Hy = XHZ ly—xz—x)2 + Tx—y[2lz— sz (x—y,z—y)2 + Tx—z[2ly— ZH2 (x—z,y—2)2 )
and exactly one of the following two cases occurs:

(a) K €]0,+oo[ and

ly —zlPx =z x —y)x+llx —z[Xy —zy -y + Ix —ylPz—xz—y)z

CC(S) = <

(b) K is not defined (because of a zero denominator) and CC(S) = .

9 Applications of the circumcenter

In this section, we discuss applications of the circumcenter in optimization.
Let z € H, and let Uy, ..., U, be closed subspaces of H. The corresponding best approximation
problem is to

Find 7 € N/, U; such that ||z — || = min ||z — ul. (9.1)
wen™, U
Clearly, the solution of is just Pry 2.
Now assume that % = RR", and let U and V be linear subspaces of H, i.e., we focus on m = 2
subspaces. Set

S:R" — P(R"): x — {x, Ryx, RyRyx}.

Behling, Bello Cruz, and Santos introduced and studied in [4] an algorithm to accelerate the Douglas—
Rachford algorithm they termed the Circumcentered-Douglas-Rachford method (C-DRM). Given a current
point x € R”, the next iterate of the C-DRM is the circumcenter of the triangle with vertices x, Ryzx
and Ry Ryx. Hence, given the initial point x € IR”, the C-DRM generates the sequence (x¥));cp via

xO =y and (VkeN) x*D=cc(Sx")). (9.2)

Behling et al.’s [4, Lemma 2] guarantees that for every x € R", the circumcenter CC(S(x)) is the
projection of any point w € U N V onto the affine subspace aff{x, Ryx, RyRyx}. Here, the existence
of the circumcenter of S(x) turns out to be a necessary condition for the nonemptiness of U N V.
In fact, CC(S(x)) = Pagi(s(x))(Punvx), which means that CC(S(x)) is the closest point to the Pynyx
among the points in the affine subspace aff(S(x)). In [4, Theorem 1], the authors proved that if x
in is replaced by Pyz, Pyz or Pyyz, where z € R”, then the C-DRM sequence defined in
converges linearly to Pynyz. Moreover, their rate of convergence is at least the cosine of the Friedrichs
angle between U and V, ¢r € [0,1], which happens to be the sharp rate for the original DRM; see [3,
Theorem 4.1] for details.

In [4, Section 3.1], the authors elaborate on how to compute the circumcenter of S(x) in R". They
used the fact that the projection of CC(S(x)) onto each vector Rizx — x and Ry Ryyx — x has its endpoint
at the midpoint of the line segment from x to Ryx and x to RyRyx. They exhibited a 2 x 2 linear
system of equations to calculate the CC(S(x)) and an expression of the CC(S(x)) with parameters.
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Their expression of the CC(S(x)) can be deduced from our . Actually, for every x € R”,
using , we can easily obtain a closed formula for CC(S(x)) allowing us to efficiently
calculate the C-DRM sequence.

In [4, Corollary 3], Behling et al. proved that their linear convergence results are applicable to affine
subspaces with nonempty intersection using the Friedrichs angle of suitable linear subspaces parallel
to the original affine subspaces. Returning to , We now set

S:R" — P(R"): x — {x, Ruy,x, Ryy R, %, . . ., Ry, - - - Ry, Ry X}

In order to minimize the inherent zig-zag behaviour of sequences generated by various reflection
and projection methods, Behling et al. generalized the C-DRM in [5] to the so-called Circumcentered-
Reflection Method (CRM). Using our notation, it turns out that the underlying CRM operator C: R" —
R" is nothing but the composition CC o S. Hence Behling et al.’s CRM sequence is just

x®=x and (vkeN) x*D=cc(Sx®)). (9.3)
In [5, Lemma 3.1], they show C is well defined. Moreover, they also obtain

(Vw € M4U;)  CC(S(x)) = Pygisiay (®@)-

~

In particular, CC(S(x)) = Pg5(x)) (Prz,u,x), which means that the circumcenter of the set S(x) is

-~

the point in aff(S(x)) that is closest to Pn» ,x. Behling et al.’s central convergence result (see [5,
Theorem 3.3]) states that the CRM sequence converges linearly to Pry ;.

For the actual computation of the circumcenter of the set S(x), both [4] and [5] only contain passing
references to that the computation “requires the resolution of a suitable m x m linear system of equa-
tions.” Concluding this section, let us point out that the explicit formula presented in
may be used; after finding a maximally linearly independent subset of S(x) — x (using Matlab, say)
one can directly use the formula in to calculate the circumcenter.

10 The circumcenter in R and the crossproduct

We conclude this paper by expressing the circumcenter and circumradius in R3 by using the cross
product. We start by reviewing some properties of the cross product.

Definition 10.1 (cross product) [1, page 483] Let x = (x1, x2,x3) and y = (y1, Y2, y3) be two vectors in
IR3. The cross product x x y (in that order) is

x Xy = (x2y3 — X3y2, X3Y1 — X1Y3, X1¥2 — X2Y1).
Fact 10.2 [1, Theorem 13.12] and [6, Theorem 17.12] Let x, y, z be in R®. Then the following hold:

(i) The cross product defined in is a bilinear function, that is, for every «, p € R,
(ax+By) xz=a(x xz)+ By xz) and xx (ay+ pz) =a(x xy)+ p(x x z).
(ii) x X y € (span{x,y})*, that is
(Ve e R) (VBE€R) (xxy,ax+py)=0.
(iii) We have
(xxy)xz=(x,z)y—(y,z)x and xx (yxz)=(x,2z)y—(x,y)z.
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(iv) (Lagrange’s identity) [|x x y[2 = [x|/ly| — (x,)?

Definition 10.3 [1, page 458] Let x and y be two nonzero vectors in R"”, where n > 1. Then the angle 0
between x and y is defined by

(x,y)
[yl

0 = arccos

where arccos: [—1,1] — [0, 7t].

Remark 10.4 If x and y are two nonzero vectors in R”, where n > 1, then
(x,y) = |lx[[lly|| cos®,

where 6 is the angle between x and y.

Fact 10.5 [1, page 485] Let x and y be two nonzero vectors in R3, and let 6 be the angle between x and y. Then
|x x y|| = [|x||||y|| sin® = the area of the parallelogram determined by x and y.

Now we are ready for the expression of the circumcenter and circumradius by cross product.

Theorem 10.6 Suppose that H = R?, that x,y,z are affinely independent, and that S = {x,y,z}. Set

a=1Yy—x,and b =z — x and let the angle between a and b, defined in ,be 6. Then
: _ (lla]*b—||b][*a) x (axb)

(i) CC(S) =x+ 3axB|? .

.. bl|||la—b a—b

(i) 16, 1.54] CR(s) = lalela—tl _ ot
Proof. (i): Using the formula of circumcenter in , we have

1 ly — x|1? <y—nz—x»_lcw—xw>
CC(S)=x+=(y—x z—x (
(S)=x+30 Nemvy=—n a1 ") Uz-x2

oYy (el @B\ (all?

=z (0 BE) (k)

B 1 Iz - lal?

=<+ s @ P (o i) (o)
) 1 o (el IBlE  [b]Ra )
+ s =mm @ 2 (llelele - feltos))
. UlalP 0812 = 112, 1))a + (lal bl = lal4a, b))

2([|al|[[b[* = (a, b)%)
(lla]*b — |Il[*a, b)a — (||a]|*b — [[b]*a,a)b

= x+
2([lall(16]]* = (a, b)?)
Using the and (iv), we get
_ ., Ulal?b — ||b|[*a) x (a x b)
e = Aaxbr
: By , we have
2b — ||b||?a) x (ax b
CR(S) = Icc(s) -] = | P 1) x (a x ) o)

2||a x bl
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Using and , we obtain

| lalo — 1011%0) x (@ x )| = (|l — 1512a]| lla x Bl — (llall?6 — [o]%a,a x b))

= || llal%e — ljp1a]|lla x b].

In addition, by , since ||a|| # 0, ||b]| # 0, thus
dl
ll|2b— |b|2 iiksd1} H H
|l — 1o} b -l
Now
]l ‘Ilall ’ <||a|| 1]l > ‘
b — t—a|l = (|5l — 2 b ) +
‘H - lla] 1B flal flall”
= |lal* — 2(b, a) + ||b||?
= |la —b||*.
Upon combining , and , we obtain

| llall?s = 11612a) x (a x B)|| = [lalllib][}a — bil|}a x b

Hence yields
- 2 >
CR(S) = 2||a><b||2H lall?b — |1ba) x (2 x b) |
1
- WH&HHWH& —b||||a x b|
_ lallollla bl
2llax bl
By , we know ||a x b|| = ||a||||b|| sin 6. Thus, we obtain
CR(S) = [allllEll][a — bl _ la— b

2|la x b|| 2sinf

and the proof is complete.

NI—=

(10.2)

(10.3)

(10.4)

Fact 10.7 [9, Theorem I] Suppose that n > 3, and a cross product is defined which assigns to any two vectors

v,w € R" avector v x w € R" such that the following three properties hold:
(i) v x wis a bilinear function of v and w.
(ii) The vector v x w is perpendicular to both v and w.
(i) [lox w|? = [[o]?[|w]* - (o, w)*.

Thenn =3or7.

Remark 10.8 In view of and our proof of
to a general Hilbert space H — unless the dimension of H is either 3 or 7.
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