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Abstract

Aragón Artacho and Campoy recently proposed a new method for computing the projection onto the intersection
of two closed convex sets in Hilbert space; moreover, they proposed in 2018 a generalization from normal cone
operators to maximally monotone operators. In this paper, we complete this analysis by demonstrating that the
underlying curve converges to the nearest zero of the sum of the two operators. We also provide a new interpre-
tation of the underlying operators in terms of the resolvent and the proximal average.
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1. Introduction

Throughout this note,

X is a real Hilbert space (1)

with inner product 〈 · | · 〉 and associated norm ‖ · ‖. The
notation of our paper is standard and mainly follows [6]
to which we also refer to basic results on convex analy-
sis and monotone operator theory. A central problem
is to find a zero (critical point) of the sum of two maxi-
mally monotone operators. The Douglas–Rachford and
Peaceman–Rachford algorithms (see Fact 2.1 below) are
classical approaches to solve this problem. If the mono-
tone operators are normal cone operators of nonempty
closed convex subsets of X, then one obtains a feasibil-
ity problem, i.e., the problem of finding a point in the
intersection of the two sets. Suppose, however, that we
are interested in finding the nearest point in the inter-
section. One may then apply several classical best ap-
proximation algorithms (see, e.g., [6, Chapter 30]). In
the recently published paper [1], Aragón Artacho and
Campoy presented a novel algorithm, which we term
the Aragón Artacho–Campoy Algorithm (AACA) to solve

∗Corresponding author
Email addresses: salihahalwadani@hotmail.com (Salihah

Alwadani), heinz.bauschke@ubc.ca (Heinz H. Bauschke),
wmoursi@stanford.edu (Walaa M. Moursi), shawn.wang@ubc.ca
(Xianfu Wang)

this best approximation problem. Even more recently,
they extended this algorithm in [2] to deal with general
maximally monotone operators.

The aim of this paper is to re-derive the AACA from
the view point of the proximal and resolvent average. We
also complete their analysis by describing the asymptotic be-
haviour of the underlying curve.

This note is organized as follows. In Section 2, we
collect a few facts and results that will make the sub-
sequent analysis more clear. Section 3 contains a new
variant of a convergence result for AACA (Theorem 3.2)
as well as the announced asymptotic behaviour of the
curve (Theorem 3.4).

2. Auxiliary results

Fact 2.1 (Douglas–Rachford and Peaceman–Rachford)
Let A and B be maximally monotone on X. Suppose
that zer (A + B) = (A + B)−1(0) , ∅, let λ ∈ ]0, 1], and
set

T = (1− λ) Id+λRBRA, (2)

where JA = (Id+A)−1 and RA = 2JA − Id. Let x0 ∈ X
and define

(∀n ∈N) xn+1 = Txn. (3)

Then there exists x̄ ∈ Fix T such that z̄ = JA x̄ ∈ zer (A+
B) and the following hold:

(i) If A or B is strongly monotone, then zer (A + B) =
{z̄}.

(ii) If λ < 1, then xn ⇀ x̄ and JAxn ⇀ z̄.

(iii) If λ < 1 and A or B is strongly monotone, then
JAxn → z̄.
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(iv) If λ = 1 and A is strongly monotone, then JAxn →
z̄.

Proof. This follows from [6, Theorem 26.11 and Proposi-
tion 26.13]. See also [8]. �

The proof of the following result, which is a slight
generalization of [2, Proposition 3.1], is straight-forward
and hence omitted.

Proposition 2.2 Let C be maximally monotone on X, let
w ∈ X, let γ ∈ ]0, 1], and set

Cγ : X⇒X : x 7→C(γ−1(x− (1− γ)w))

+ (1− γ)γ−1(x− w).
(4)

Then Cγ is maximally monotone and its resolvent is given by

JCγ
: X → X : x 7→ γJCx + (1− γ)w. (5)

Remark 2.3 (resolvent and proximal average) Consider
the setting of Proposition 2.2. Because JCγ

is a convex
combination of the resolvents JC and P{w}, we see that
Cγ is nothing but a resolvent average of C and N{w}. See
[3] for a detailed study of resolvent averages. Let σC ≥
0. We note that if C is σC-strongly monotone, i.e., C −
σC Id is monotone, then

Cγ is γ−1(σC + 1− γ)-strongly monotone. (6)

This can be verified directly (as in [2, Proposition 3.1])
or it also follows from [3, Theorem 3.20].

Now suppose that additionally C = ∂h for some
proper lower semicontinuous convex function h on X.
Then Cγ = ∂hγ and JCγ

= Proxhγ
, where

hγ : X → ]−∞,+∞] (7a)

: x 7→ inf
{

γh(y1) + (1− γ)ι{w}(y2) (7b)

+
γ(1− γ)

2
‖y1 − y2‖2

∣∣∣ γy1 + (1− γ)y2 = x
}

(7c)

= γh
(
γ−1(x− (1− γ)w)

)
+

γ(1− γ)

2
‖γ−1(x− (1− γ)w)− w‖2 (7d)

= γh
(
γ−1(x− (1− γ)w)

)
+

1− γ

2γ
‖x− w‖2

(7e)

is the proximal average of h and ι{w}. See [7] and the ref-
erence therein for more on the proximal average.

3. The Aragón Artacho–Campoy algorithm (AACA)

From now on, we suppose that

A and B are maximally monotone on X, (8)

w ∈ X, and γ ∈ ]0, 1[. (9)

Let σA > 0 and σB > 0 be such that

A− σA Id and B− σB Id are monotone, (10)

and we also assume that

A + B is maximally monotone (11)

which will make all results more tidy. (See also Re-
mark 3.3 below.) Next, as in Remark 2.3, we introduce
the resolvent averages between A, B and N{w}:

Aγ : X⇒X : x 7→A
(
γ−1(x− (1− γ)w)

)
+ γ−1(1− γ)(x− w)

(12)

and

Bγ : X⇒X : x 7→B
(
γ−1(x− (1− γ)w)

)
+ γ−1(1− γ)(x− w).

(13)

Proposition 3.1 The following hold true:

(i) Aγ, Bγ, and Aγ + Bγ are maximally monotone.

(ii) Aγ, Bγ, and Aγ + Bγ are strongly monotone, with
constants γ−1(σA + 1 − γ), γ−1(σB + 1 − γ), and
γ−1(σA + σB + 2− 2γ), respectively.

(iii) zer (Aγ + Bγ) is nonempty and a singleton.

(iv) zer (Aγ + Bγ) =
{

γJ(2(1−γ))−1(A+B)(w)(1− γ)w
}

.

Proof. (i): Clear. (ii): This follows from (6). (iii): Items (i)
and (ii) imply that Aγ + Bγ is maximally monotone and
strongly monotone. Now apply [6, Corollary 23.37(ii)].
(iv): Indeed, let x ∈ X. Then x ∈ zer (Aγ + Bγ) ⇔
0 ∈ (A + B)(γ−1(x − (1− γ)w) + 2γ−1(1− γ)(x − w)
⇔ 0 ∈ (2(1 − γ))−1(A + B)(γ−1(x − (1 −
γ)w) + γ−1(x − w) ⇔ w ∈ (2(1 − γ))−1(A +
B)(γ−1(x − (1 − γ)w) + γ−1(x − (1 − γ)w) =
(Id+(2(1 − γ))−1(A + B))(γ−1(x − (1 − γ)w)
⇔ γ−1(x − (1 − γ)w) = J(2(1−γ))−1(A+B)(w)

⇔ x − (1 − γ)w = γJ(2(1−γ))−1(A+B)(w) ⇔
x = γJ(2(1−γ))−1(A+B)(w) + (1− γ)w. �

In view of Proposition 3.1(iii), we denote the unique
point in zer (Aγ + Bγ) by zγ, where by Proposi-
tion 3.1(iv) we have

zγ = γJ(2(1−γ))−1(A+B)(w) + (1− γ)w, (14)

and

zer (Aγ + Bγ) = {zγ}. (15)

We now essentially re-derive the central convergence
result of Aragón–Artacho and Campoy [2, Theorem 3.1]:

Theorem 3.2 (AACA for fixed γ) Given x0 ∈ X and λ ∈
]0, 1], define the sequence (xn)n∈N via

(∀n ∈N) xn+1 = Tn
γ xn, (16)
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where, for every x ∈ X,

Tγx = (1− λ)x + λ
(
2γJB + 2(1− γ)w− Id

)
◦
(
2γJA + 2(1− γ)w− Id

)
x.

(17)

Then the following hold:

(i) There exists x̄ ∈ Fix(RBγ RAγ
)= Fix Tγ such that

xn ⇀ x̄ and γJAxn + (1− γ)w→ zγ.

(ii) JAxn → J(2(1−γ))−1(A+B)(w).

Proof. (i): On the one hand, by Proposition 2.2,

JAγ
= γJA + (1− γ)w and JBγ = γJB + (1− γ)w,

(18)
which implies

RAγ
= 2γJA + 2(1− γ)w− Id (19)

and

RBγ = 2γJB + 2(1− γ)w− Id, (20)

and further

RBγ RAγ
=
(
2γJB + 2(1− γ)w− Id

)
◦
(
2γJA + 2(1− γ)w− Id

)
.

(21)

On the other hand, both Aγ and Bγ are strongly mono-
tone with constant γ−1(1−γ). Altogether, the result fol-
lows from Fact 2.1 applied to (Aγ, Bγ) instead of (A, B).

(ii): Combine item (i) and Proposition 3.1(iv). �

Remark 3.3 Several comments regarding Theorem 3.2
are in order.

(i) We have opted for an explicit and thus easier-to-use
version of AACA where the effect of w is explicitly
recorded.

(ii) Given y0 ∈ X, and λ ∈ ]0, 1], the ACAA version
defined in [2] (with scaling parameter equal to 1)
generates the sequence (yn)n∈N via

(∀n ∈N) yn+1 = T̃n
γ y0, (22)

where, for every y ∈ X,

T̃γy = (1− λ)y

+ λ
(
2γJB(2γJA(y + w)− 2γw− y + w)

− 2γJA(y + w) + y
)
.

(23)

One can easily see that T̃γ = −w + Tγ(·+ w). Let
x0 ∈ X, set y0 = x0 − w, set (∀n ∈ N) xn = Tn

γ x0,
and yn = T̃n

γ y0. Using induction it is straightfor-
ward to verify that

(yn)n∈N = (−w + xn)n∈N. (24)

Combining (24) and Proposition 3.1(iv), we recover
the conclusion of [2, Theorem 3.1(iii)], i.e., JA(w +
yn)→ J(2(1−γ))−1(A+B)(w).

(iii) While one could make λ depending on n as in [2],
we decided instead to stress the new case when
λ = 1, corresponding to the Peaceman–Rachford
version and notably absent in [2]. This case de-
serves interest because it turned out to be the best
parameter choice in [5].

(iv) Our assumption of maximal monotonicity makes
for a tidy theory. It is used chiefly to guarantee
the existence of each zγ; in [2], this is replaced by
some condition regarding the existence of zγ which
seems to be not so easy to check in practice.

(v) One may apply Theorem 3.2 in a standard prod-
uct space setting to handle the sum of finitely many
maximally monotone operators via AACA, as done
in [2]. Using this setting, the original problem re-
duces to the problem of finding a zero of the sum
of two operators, where one of them is a normal
cone operator of a closed linear subspace.

Of course, the remaining key question is:

What is the behaviour when γ→ 1− for AACA?

While this was answered in some form in [1] when A
and B are normal cone operators, no result was offered
in [2]. We conclude this paper by providing a complete
and satisfying answer, relying on tools by Combettes
and Hirstoaga [9] and [10], packed also into [6, Theo-
rem 23.44].

Theorem 3.4 (dichotomy for AACA when γ→ 1−) Let
zγ be as in (14). Then exactly one of the following holds:

(i) zer (A + B) , ∅ and zγ → Pzer (A+B)w as γ→ 1−.

(ii) zer (A + B) = ∅ and ‖zγ‖ → ∞ as γ→ 1−.

Proof. Set δ = 2(1−γ) and note that δ→ 0+⇔ γ→ 1−.
Moreover, set

yδ = γ−1(zγ − (1− γ)w
)
. (25)

We have, by definitions of zγ and yδ,

0 ∈ (Aγ + Bγ)(zγ) = (A + B)yδ + δ(yδ − w). (26)

Two cases are now conceivable.

Case 1: zer (A + B) , ∅. By [6, Theorem 23.44(i)], we
have

lim
δ→0+

yδ = Pzer (A+B)w; (27)

or equivalently, limγ→1− zγ = Pzer (A+B)w.

Case 2: zer (A + B) = ∅. By [6, Theorem 23.44(ii)],
we have

lim
δ→0+

‖yδ‖ = +∞; (28)

or equivalently, limγ→1− ‖zγ‖ = +∞.

Altogether, the proof is complete. �
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Remark 3.5 Here are some comments on Theorem 3.4.

(i) The information presented in Theorem 3.4(ii) is
new even when A and B are normal cone operators
as in [1].

(ii) Computing Pzer (A+B)w via Theorem 3.4 is cumber-
some and “doubly iterative”: one must first em-
ploy an algorithm to find zγ, and the let γ tend to
1−. There are, however, some results that allow us
to avoid this double iteration and instead solve the
problem via a single iteration; see, e.g., the discus-
sion in [4, Section 8].

Let us conclude with a simple example.

Example 3.6 Suppose that A = PU , where U is a closed
linear subspace of X, and B ≡ −v, where v ∈ U⊥. Then
zer (A + B) = U⊥, if v = 0; zer (A + B) = ∅, if v , 0.
Let w = 0 ∈ X, and let γ ∈ ]0, 1[. Then (∀x ∈ X)
Aγx = γ−1(PU(x)+ (1−γ)x) and Bγx = −v+γ−1(1−
γ)x. Hence zer (Aγ + Bγ) = {zγ}, where zγ = (2(1−
γ))−1γv.

Case 1: v = 0. Then zγ ≡ 0→ 0 = Pzer (A+B)(w).

Case 2: v , 0. Then ‖zγ‖ = (2(1 − γ))−1γ‖v‖ →
+∞.

Both cases illustrate Theorem 3.4.
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