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Hybrid projection–reflection method
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The phase-retrieval problem, fundamental in applied physics and engineering, addresses the question of how
to determine the phase of a complex-valued function from modulus data and additional a priori information.
Recently we identified two important methods for phase retrieval, namely, Fienup’s basic input–output and
hybrid input–output (HIO) algorithms, with classical convex projection methods and suggested that further
connections between convex optimization and phase retrieval should be explored. Following up on this work,
we introduce a new projection-based method, termed the hybrid projection–reflection (HPR) algorithm, for
solving phase-retrieval problems featuring nonnegativity constraints in the object domain. Motivated by
properties of the HPR algorithm for convex constraints, we recommend an error measure studied by Fienup
more than 20 years ago. This error measure, which has received little attention in the literature, lends itself
to an easily implementable stopping criterion. In numerical experiments we found the HPR algorithm to be
a competitive alternative to the HIO algorithm and the stopping criterion to be reliable and robust. © 2003
Optical Society of America

OCIS codes: 100.5070, 100.3020, 100.3010.
1. INTRODUCTION
The best known and most widely used projection-based
methods for phase retrieval are the error-reduction (ER)
algorithm, which was derived from the pioneering re-
search of Gerchberg and Saxton,1 and Fienup’s basic
input–output (BIO) and hybrid input–output (HIO)
algorithms.2 In the mid-1980’s Levi and Stark3,4 identi-
fied the ER algorithm as a nonconvex application of a se-
quential projection algorithm known in convex settings as
projections onto convex sets or POCS.5,6 In the same
spirit, we recently presented new interpretations of Fien-
up’s algorithms: The BIO and HIO algorithms turn out
to be nonconvex instances of the Dykstra7 and the
Douglas–Rachford8 projection algorithms, respectively.9

The POCS, Dykstra, and Douglas–Rachford projection
algorithms are governed by iterations of the form

xn11 5 T~xn!, (1)

where xn is the current estimate of the function to be re-
constructed and T is an operator that utilizes in some
fashion the projectors onto the constraint sets. The con-
vergence behavior of these algorithms is well understood,
provided that all constraint sets are convex. Although
convergence results do not carry over from the convex set-
ting to the nonconvex setting of phase retrieval, it is none-
theless useful to make this connection. Indeed, it not
only provides different views and insights on known
1084-7529/2003/061025-10$15.00 ©
phase-retrieval methods but, more important, it also sug-
gests a systematic way of experimenting with novel algo-
rithmic structures by the formal adaptation of convex op-
timization algorithms to phase retrieval.

We model a signal as a function x : X → Y, where X is
either RN or ZN, corresponding to analog or discrete sig-
nals, respectively, and where Y is either R or C, depending
on whether x is real or complex valued. We denote the
original object, or signal, to be recovered by x* . In the
analysis of Ref. 9 the setting was Y 5 C. In many impor-
tant applications (e.g., optical interferometry astronomy
and crystallography) the original signal x* is real valued
and nonnegative.10,11 The algorithms discussed here are
limited to these applications. Hence, throughout this pa-
per, signals are viewed as points in L, the Hilbert space of
square-integrable functions from X to R. Our notation is
the same as in Ref. 9. We denote by PX an arbitrary but
fixed selection of the possibly multivalued projector onto a
subset X of L. By definition, the operator RX 5 2PX
2 I, where I is the identity operator on L, is the reflector
with respect to X; in other words, for every x P L, PX(x)
is the midpoint between x and RX(x).

Many signal-recovery problems can be formulated
mathematically as a feasibility problem of the form

find x P S ù M, (2)
2003 Optical Society of America
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where S is the set of signals in L that satisfy object-
domain constraints and M is the set of signals in L that
satisfy Fourier-domain constraints.5,13

In phase retrieval, M is the set of signals whose Fourier
modulus agrees with some measured data m, namely,

M 5 $ y P L u u ŷu 5 m%, (3)

where ŷ denotes the Fourier transform of y. For the ap-
plications we consider here, the data m : X → R is a mea-
surement of the magnitude of the Fourier transform of
the original signal x* ; thus m is a nonnegative even func-
tion. The projection of a signal x P L onto the Fourier
magnitude constraint set M, PMx, is computed by replac-
ing the magnitude of the Fourier transform of x by the
known magnitude data m and inverse transforming the
result:

PM~x ! 5 F 21~ ŷ0!, (4)

where F 21 is the inverse Fourier transform and ŷ0 , a par-
ticular selection of the multivalued Fourier domain pro-
jection, is defined by

ŷ0~v! 5 H m~v!
x̂~v!

u x̂~v!u
if x̂~v! Þ 0

m~v! otherwise

. (5)

For further discussion of this projector, see Example 3.6 of
Ref. 9. Note that if x is real, then x̂ is Hermitian (conju-
gate symmetric). Since the data m is an even function,
our choice of selection ŷ0 also has this property; thus
PM(x) is real valued; that is, the projector PM necessarily
maps the space of real-valued functions L to itself.

Recalling the original signal x* , let the set D , X sat-
isfy

$t P X u x* ~t ! Þ 0% , D. (6)

Let us denote the complement of D by D, and by 1D the
function that takes on the value 0 on D and the value 1 on
D. Critical to the analysis of Ref. 9 is the fact that the
object-domain constraint consists only of support informa-
tion, namely,

S 5 $ y P L u y • 1D 5 0%. (7)

We emphasize that S is a closed convex set (in fact, a lin-
ear subspace—see Ref. 6 or Example 3.14(i) of Ref. 9),
whereas M defined by Eq. (3) is closed but not convex (see
Example 3.15 and Remark 111 of Ref. 9). As shown in
Example 3.14(i) of Ref. 9, the projection of a signal x
P L onto S is given by

PS~x ! 5 x • 1D . (8)

In Section 5 of Ref. 9, the BIO and HIO algorithms with
b 5 1 were shown to fit the structure of Eq. (1) with
T 5 PSPM 1 I 2 PM and T 5 PS(2PM 2 I) 1 I 2 PM ,
respectively. The ER algorithm can also be put into this
form by taking T 5 PSPM (Ref. 3). We show below that
such closed-form representations are not always easily
obtained.

For the phase-retrieval problems considered here, sup-
port information alone is insufficient for satisfactory sig-
nal recovery; hence additional object-domain constraints
are utilized. Since the original signal x* is real valued
and nonnegative, these properties are included in the
problem formulation by defining the object-domain con-
straint set S1 as

S1 5 $ y P L u y • 1D 5 0 and y > 0%. (9)

Arguing as in Examples 3.14(i) and 3.14(iii) of Ref. 9, the
projection of a signal x P L onto S1 is given by

~;t P X!

(PS1
~x !)~t ! 5 H max$0, x~t !% if t P D

0 otherwise
. (10)

Altogether, the feasibility problem [expression (2)] be-
comes

find x P S1 ù M. (11)

Although the ER algorithm for expression (11) can imme-
diately be put into the form of Eq. (1) by setting
T 5 PS1

PM , we have not been able to find corresponding
reformulations of the BIO and HIO algorithms. Indeed,
though in this case the set S1 is still closed and convex
(see Example 3.14 of Ref. 9), the correspondences between
Eqs. (19) and (20) of Ref. 9 on the one hand and Eqs. (21)
and (23) of Ref. 9 on the other hand do not hold here be-
cause key properties of the object-domain projector are
lost: Most notably, PS is a linear operator, but PS1

is not.
However, in an effort to formalize the HIO algorithm for
expression (11) as a fixed-point scheme of the Eq. (1) type,
we arrive at a new algorithm for phase retrieval. This
method, which we call the hybrid–projection reflection
(HPR) algorithm, is a relaxation of the Douglas–Rachford
projection algorithm and is therefore well motivated by
its counterpart in convex optimization. Moreover, on the
basis of our numerical results, the HPR algorithm ap-
pears to be a competitive alternative to the HIO algo-
rithm.

The remainder of the paper is organized as follows. In
Section 2 we review the HIO algorithm. The new algo-
rithm (HPR) is introduced in Section 3, and Section 4 is
devoted to numerical simulations.

2. FIENUP’S HYBRID INPUT–OUTPUT
ALGORITHM
Let x0 P L be an initial guess and b be a fixed real relax-
ation parameter.14 Fienup’s HIO algorithm2 generates a
sequence of signals (xn)nPN recursively as follows. Given
a current iterate xn P L, define

gn 5 $t P X u PM~xn!

violates the object-domain constraint at t%.

(12)

The next iterate xn11 is given by

~;t P X!

xn11~t ! 5 H (PM~xn!)~t ! if t ¹ gn

xn~t ! 2 b(PM~xn!)~t ! if t P gn
. (13)

We show below that the form of the object-domain con-
straint is critical to the analysis and implementation of
the HIO algorithm. To illustrate this we specialize the
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HIO algorithm to the cases in which the object domain
contains only a support constraint (Subsection 2.A) and
both support and nonnegativity constraints (Subsection
2.B).

A. Support Constraint Only
If the object-domain constraint set incorporates only a
support constraint [as in Eq. (7)] and the zero crossings of
PM(xn) outside of D are assumed to be negligible,15 then
algorithm (13) can be rewritten as

~;t P X!

xn11~t !
5 H (PM~xn!)~t ! if t P D

xn~t ! 2 b(PM~xn!)~t ! otherwise
. (14)

This formulation of the HIO algorithm leads to the follow-
ing convenient expression in terms of reflectors and
projectors (recall that RS 5 2PS 2 I and that RM
5 2PM 2 I).

Proposition 1. Algorithm (14) is equivalent to

xn11 5
1
2 ~RS~RM 1 ~b 2 1 !PM) 1 I 1 ~1 2 b!PM!~xn!.

(15)
Proof. For every n > 0, Eq. (14) yields

xn11 5 1D • PM~xn! 1 1D • ~xn 2 bPMxn!

5 1D • PM~xn! 1 ~1 2 1D! • ~xn 2 bPMxn!

5 1D • (~1 1 b!PM 2 I)~xn! 1 xn 2 bPM~xn!

5 PS(~1 1 b!PM 2 I)~xn! 1 xn 2 bPM~xn!

5
1
2 ~~2PS 2 I !(~1 1 b!PM 2 I)

1 I 1 ~1 2 b!PM!~xn!

5
1
2 ~RS(RM 1 ~b 2 1 !PM)

1 I 1 ~1 2 b!PM!~xn!,

where the fourth equality follows from Eq. (8). h

Proposition 1 is an extension of Observation 5.10 of Ref.
9. Indeed, if b 5 1, then algorithm (14) is equivalent to
the following nonconvex version of the Douglas–Rachford
projection algorithm:

xn11 5
1
2 ~RSRM 1 I !~xn!. (16)

B. Support and Nonnegativity Constraints
We now turn to the situation in which the object-domain
constraint is given by the set S1 of Eq. (9). As in the pre-
vious case, again assuming that the zero crossings of
PM(xn) outside of D are negligible, the HIO algorithm
[Eq. (13)] becomes

~;t P X!

xn11~t ! 5 5
(PM~xn!)~t !

if t P D and (PM~xn!)~t ! > 0

xn~t ! 2 b(PM~xn!)~t !

otherwise

. (17)

Although the HIO algorithm without a nonnegativity
constraint [Eq. (14)] can be reformulated in terms of pro-
jectors and reflectors as in Eq. (15), the nonlinearity of
PS1

—which is due to the nonnegativity constraint in Eq.
(9)—appears to make a corresponding reformulation of
Eq. (17) impossible.
3. HYBRID PROJECTION–REFLECTION
ALGORITHM
In this section we derive a new phase-retrieval algorithm
based on the following two principles. First, the spirit of
the method should be close to that of the HIO algorithm,
whose effectiveness is well established. Second, it should
bear a strong connection with a convex optimization algo-
rithm. Equation (16) suggests the use of the Douglas–
Rachford projection scheme as an algorithmic model.
For the sets S1 and M, the Douglas–Rachford algorithm
is simply

xn11 5
1
2 ~RS1

RM 1 I !~xn!. (18)

As with the HIO algorithm, it is desirable to incorporate a
relaxation parameter for added flexibility. This leads to
the following analog to Eq. (15):

xn11 5
1
2 ~RS1

(RM 1 ~b 2 1 !PM)

1 I 1 ~1 2 b!PM!~xn!. (19)

Next, we unravel Eq. (19) into an algorithmic prescrip-
tion analogous to Eq. (17). Given an arbitrary signal z
P L, let z1 5 max$z, 0% and z2 5 min$z, 0% be its posi-
tive and negative parts, respectively. Then the following
relations hold:

xn11 5
1
2 ~RS1

(RM 1 ~b 2 1 !PM) 1 I 1 ~1 2 b!PM!~xn!

5
1
2 ~~2PS1

2 I !(~1 1 b!PM 2 I)

1 I 1 ~1 2 b!PM!~xn!

5 PS1
(~1 1 b!PM 2 I)~xn! 1 xn 2 bPM~xn!

5 ~1D • (~1 1 b!PM 2 I)~xn!!1 1 xn 2 bPM~xn!

5 1D • PM~xn! 1 1D • ~xn 2 bPMxn!

2 ~1D • (~1 1 b!PM 2 I)~xn!!2. (20)

The fourth equality follows from Eq. (10), and the last
equality uses the identity 1 2 1D 5 1D together with
the fact that z 5 z1 1 z2, where z 5 1D • @(1 1 b)PM
2 I#(xn). We now consider two cases.
(1) If t P D, then Eq. (20) yields

xn11~t ! 5 (PM~xn!)~t ! 2 ~(~1 1 b!PM 2 I)~xn!!2~t !

5 5
(PM~xn!)~t !

if ~1 1 b!(PM~xn!)~t ! > xn~t !

xn~t ! 2 b(PM~xn!)~t !

otherwise

. (21)

(2) If t ¹ D, then Eq. (20) yields directly

xn11~t ! 5 xn~t ! 2 b(PM~xn!)~t !. (22)

The following formal statement of the HPR algorithm
summarizes these results.
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Hybrid–Projection Reflection Algorithm. Starting with
an arbitrary signal x0 P L, the HPR algorithm is gov-
erned by the recursion

We have thus proven the following analog to Proposition
1.

Proposition 2. Algorithm (23) is equivalent to the re-
cursion equation (19).

For the case b 5 1, algorithm (23) specializes to

~;t P X!

xn11~t ! 5 H (PM~xn!)~t ! if t P D and

(RM~xn!)~t ! > 0

xn~t ! 2 (PM~xn!)~t ! otherwise
.

(24)

Note that xn11(t) is (PM(xn))(t) or xn(t) 2 (PM(xn))(t),
exactly as in the HIO algorithm [Eq. (17)] for b 5 1. The
crucial difference is the condition used to determine
when, for t P D, the update rule xn11(t) 5 (PM(xn))(t)
applies: In Eq. (17), the requirement of the HIO algo-
rithm (with b 5 1) is

(PM~xn!)~t ! > 0, (25)

whereas in algorithm (24) the update rule depends on

(RM~xn!)~t ! > 0. (26)

4. HYBRID INPUT–OUTPUT AND HYBRID
PROJECTION–REFLECTION ALGORITHMS:
A COMPARISON
We compare the HPR algorithm with the HIO algorithm,
which is the leading iterative transform algorithm for the
type of problem considered in this paper. Neither the ER
nor the BIO algorithms are as effective for these types of
problems as the HIO algorithm, and they are seldom used
in practice. For our evaluation, we use the two standard
digital images shown in Figs. 1(a) and 1(d).

A. Error Measure
Before describing the details of our comparison, a few re-
marks about performance measures are necessary. Any
meaningful and quantifiable comparison requires a per-
formance measure. This is a difficult topic in the signal-
recovery literature. Often times what is measured in
phase retrieval is the normalized root-mean-squared er-
ror between the magnitude of the Fourier transform of
the current iterate and the Fourier magnitude data m,
namely,

Erms~xn! 5
i u x̂nu 2 mi

imi
, (27)

~;t P X! xn11~t ! 5 H (PM~xn!)~t ! if t P D

(RM~xn!)

xn~t ! 2 b(PM~xn!)~t ! otherwis
where m is assumed to be nonzero throughout this
section.16 The convex theory that guides our investiga-
tions suggests a different performance measure, which we

found, in practice, to be quite robust and reliable. This is
described next.

Given an initial guess x0 P L and a parameter b
P R, let (xn)nPN be the sequence generated by the HPR
algorithm [algorithm (23)]. The main convergence result
in the convex case (see Fact 5.9 of Ref. 9) suggests that
the pertinent sequence to monitor is17

(PM~xn!)nPN (28)

rather than (xn)nPN . Alternatively, since one is often
more interested in signals satisfying the object-domain
constraint, we recommend monitoring the sequence

~PS1
(PM~xn!)!nPN . (29)

Since each signal PM(xn) satisfies the Fourier modulus
constraint and since our aim is to solve expression (11),
i.e., to find a point in S1 ù M, it is natural to monitor the
squared distance from the signal PM(xn) to the set S1 ,
i.e., iPS1

(PM(xn)) 2 PM(xn)i2. In fact, Fienup originally
suggested this quantity as an error measure for the HIO
algorithm; see end of Section V on page 2764 of Ref. 2 and
remark 18. Following the standard practice in numerical
analysis of relativizing the error and recalling that
iPM(xn)i 5 imi , we define the error measure at the nth
iteration as follows:

ES1
~xn! 5

iPS1
(PM~xn!) 2 PM~xn!i2

iPM~xn!i2

5
iPS1

(PM~xn!) 2 PM~xn!i2

imi2 . (30)

In words, ES1
(xn) measures the square of the normalized

distance from PM(xn) to S1 . Using this error measure,
we compare the performance of the HPR algorithm to that
of the HIO algorithm for the two original images shown in
Figs. 1(a) and 1(d).

B. Initialization
We study the performance of the algorithms under noise-
less and noisy settings. For noiseless data, we initialize
the algorithms as in Ref. 20. More specifically, the initial
points x0 are chosen to be random-pixel magnitude maps
that satisfy the object-domain constraint, i.e., x0 P S1 .
Such an image is shown in Fig. 1(f ). For noisy data, we
take the initial guess to be simply the characteristic func-
tion of the support constraint shown in Fig. 1(c). For
both noiseless and noisy experiments, the initial guess is
normalized so as to have the same energy as the known
Fourier magnitude data, i.e., i x̂0i 5 imi .

d

> ~1 2 b!(PM~xn!)~t !. (23)
an

~t !

e
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C. Noiseless Data
The data consist of the support–nonnegativity constraint
shown in Fig. 1(c) and the Fourier magnitude data shown
in Figs. 1(b) and 1(e). To better illustrate the differences
in the algorithms, we have made the problem more diffi-
cult than it normally would be by making the support con-
straint larger than necessary. For more reasonable
strategies for choosing the support constraint in practical
applications, see Refs. 20 and 21.

We select 100 random initial points x0 generated by the
method described in Subsection 4.B and use them to com-
pare the performance of the HIO and HPR algorithms
(the same 100 random initial points are used for each al-
gorithm). Note that these initial points have random
phases in the Fourier domain, as well as random Fourier
magnitudes. Moreover, since x0 is real valued and the
data m is a real nonnegative even function, PMx0 and all
subsequent iterates are also real valued up to machine er-
ror. To compensate for limited machine precision, we
take only the real part of the computed projection, that is,

Fig. 1. Original images and corresponding data used for the
comparison of the HIO and HPR algorithms. (a) A 128 3 128
pixel image of a satellite used in Ref. 20. The center of (d) is a
38 3 38 pixel section of the standard Lena image, zero padded to
a 128 3 128 matrix. (b) and (e) The Fourier magnitude data m
corresponding to images (a) and (d), respectively. The same
object-domain support constraint of size 64 3 64 pixels, shown in
(c), is used for each example. An initial image x0 is shown in (f ).
we compute Re(PMxn). First, we compare the mean
asymptotic behavior (1000 iterations) of two sets of real-
izations of the HPR and HIO algorithms, each corre-
sponding to different values of the relaxation parameter,
b 5 0.75 and b 5 1.0. The average value of the error
metric at iteration n, ES1

(xn), is shown in Figs. 2 and 3.
These are all given in decibels [recall that the decibel
value of a . 0 is 10 log10(a)].

Figures 2 and 3 show the relative progress of the algo-
rithms with respect to the error measure [Eq. (30)]. It is
clear from these graphs that the HIO algorithm reaches
its smallest error value more rapidly than the HPR algo-
rithm. Indeed, for the HPR algorithm, the distance from
PM(xn) to S1 increases in the first few iterations. This is
due to the path that the HPR algorithm takes toward the
solution. Every trial of the HPR algorithm behaved in
this manner, though ultimately the HPR algorithm re-
duced the error metric well below that of the HIO algo-
rithm. As we show in Subsection 4.D, in the presence of
noise, the HPR algorithm did not always reduce the value
of the error metric below that achieved by the HIO algo-
rithm. Nevertheless, in both noiseless and noisy experi-
ments, the HPR algorithm consistently delivered superior
picture quality. Although we have found the error metric
[Eq. (30)] to be a reliable indicator of picture quality, this
is only relative to the algorithm it is being used to moni-
tor. In other words, the quality of an image with ES1

5 250 dB will not be as good as that of an image with
ES1

5 255 dB when both images are generated from the
same algorithm. In contrast, an iterate of the HIO algo-
rithm with ES1

5 255 dB will not necessarily look better
than an iterate of the HPR algorithm with ES1

5 253 dB. In fact, we have observed that it was often
the case that images produced by the HPR algorithm still
looked better than those produced by the HIO algorithm,
whose error value were a few percent lower. This is an
artifact of the fit of the error metric to the algorithm.

Fig. 2. Asymptotic behavior of the HIO and HPR algorithms
(b 5 0.75 and 1.0) over 100 random trials for the original image
shown in Fig. 1(a). Shown here is the mean value of the perfor-
mance measure ES1

defined by Eq. (30) at each iteration.
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We now turn to qualitative image-reconstruction re-
sults. The more than 20 years of experience that has ac-
cumulated with HIO indicates that user intervention is
often necessary to achieve satisfactory results. Fienup
and Wackerman22 studied several strategies to ensure
that HIO reaches an acceptable stagnation point. These

Fig. 3. Asymptotic behavior of the HIO and HPR algorithms
(b 5 0.75 and 1.0) over 100 random trials for the original image
shown in Fig. 1(d). Shown here is the mean value of ES1

defined
by Eq. (30) at each iteration.

Fig. 4. Typical images recovered with 600 iterations of the HIO
and HPR algorithms for the data corresponding to Fig. 1(a) and a
random initial guess similar to that shown in Fig. 1(f ). (a) and (b)
Reconstructed with the HIO algorithm for b 5 0.75 and b
5 1.0, respectively. (c) and (d) Images reconstructed with the
HPR algorithm for b 5 0.75 and b 5 1.0, respectively. The ro-
tation of all recovered images from the original image, with the
exception of (d), reflects the nonuniqueness in recovery from
phase.
strategies can also be used with HPR. However, the
HPR algorithm appears to be very robust and, in our tri-
als, reaches good stagnation points without any user in-

Fig. 5. Worst images recovered by the HIO and HPR algorithms
for the data corresponding to Fig. 1(a) and a random initial guess
similar to that shown in Fig. 1(f ). (a) and (b) Images recon-
structed with the HIO algorithm for b 5 0.75 and b 5 1.0, re-
spectively. (c) and (d) Images reconstructed with the HPR algo-
rithm for b 5 0.75 and b 5 1.0, respectively. The rotation of all
recovered images from the original image, with the exception of
(b), reflects the nonuniqueness in recovery from phase.

Fig. 6. Typical images recovered with 600 iterations of the HIO
and HPR algorithms for the data corresponding to Fig. 1(d) and a
random initial guess similar to that shown in Fig. 1(f ). (a) and
(b) Images reconstructed with the HIO algorithm for b 5 0.75
and b 5 1.0, respectively. (c) and (d) Images reconstructed with
the HPR algorithm for b 5 0.75 and b 5 1.0, respectively.



Bauschke et al. Vol. 20, No. 6 /June 2003/J. Opt. Soc. Am. A 1031
tervention or case-specific heuristics. In that sense, HPR
can be described as an autonomous algorithm. This is il-
lustrated in Figs. 4–6, where we show typical reconstruc-
tions for each of the algorithms after 600 iterations (al-
though good reconstructions are achievable with
significantly fewer iterations, 600 iterations guarantee
that HIO did reach stagnation, in agreement with Figs. 2
and 3). For the satellite images shown in Fig. 4, the dif-
ference in picture quality is not discernible to the naked
eye. However, if we now consider the worst cases pro-
duced by these algorithms, as shown in Fig. 5, then HPR
outperforms HIO (the worst of the 100 reconstructions is
taken to be that image for which ES1

is the largest at it-
eration 600). The difference in performance between the
two algorithms is much starker with the second example
shown in Fig. 6, where we display typical reconstructions.

To illustrate the robustness of the HPR algorithm, we
perform the following experiment. First, we observe that
the image of Fig. 6(b) is actually a stagnation point of HIO
(it essentially did not evolve through 5000 additional it-

Fig. 7. By use of the stagnated HIO (b 5 1.0) iterate shown in
Fig. 6(b) as the initial point, the HPR (b 5 1.0) algorithm finds a
stagnation point with a much better picture quality.

Fig. 8. Behavior of the HIO and HPR algorithms (b 5 0.75 and
1.0) with noise (SNR 5 34 dB) over 100 random trials for the
original image shown in Fig. 1(a). Shown here is the mean
value of ES1

at each iteration.
erations of HIO). This image is then used as an initial
point for HPR, which iterated to the stagnation point
shown in Fig. 7. This experiment shows that HPR can
recover further significant information from images for
which HIO did its best.

Our experiments with noiseless data reveal fundamen-
tal differences between the HIO and the HPR algorithms,
namely, the effect of changing the update rule [see Eqs.
(17) and (23)]. These differences are born out in the pres-
ence of noise, as we illustrate next.

D. Noisy Data
We investigate another aspect of robustness, namely, sen-
sitivity to noise. This is an important issue since in prac-
tical applications the Fourier data are often corrupted by
additive noise. To model this phenomenon, we added a
symmetric noise vector u to the magnitude data m shown
in Figs. 1(b) and 1(e). The components of the vector u are
drawn from a zero-mean Gaussian white noise. The
signal-to-noise ratio (SNR) is 20 log10imi /iui 5 34 dB.
We compute the mean value of the error measure ES1

over 100 trials with different realizations of the noise and
the same initial zero-phase guess, which is generated as
described in Subsection 4.B. Let us note that there is no
direct connection between the error metric ES1

and the
noise level. The error ES1

measures the gap between the
constraint sets at a particular iterate. There is no reason
this gap should scale in any predictable manner with the
noise, since the noisy data makes up one of the constraint
sets. In principle, it is possible, though unlikely, that,
even with noise, the constraint sets could have a non-
empty intersection. In this case the error metric ES1

could be arbitrarily small even with a significant amount
of noise. This is illustrated in Figs. 8 and 9, where ES1

is
less than 260 dB while the SNR is 34 dB.

Fig. 9. Behavior of the HIO and HPR algorithms (b 5 0.75 and
1.0) with noise (SNR 5 34 dB) over 100 random trials for the
original image shown in Fig. 1(d). Shown here is the mean
value of ES1

at each iteration.
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The behavior of the algorithms in this noisy environ-
ment is described by the plots shown in Figs. 8 and 9. As
with the experiments with noiseless data, the HIO algo-
rithm achieves its minimum value of ES1

more rapidly
than the HPR algorithm. As in the noiseless case, the
distance from PM(xn) to S1 increases in the first few it-
erations of the HPR algorithm. Note also in Fig. 9 that
the HIO algorithm achieves a lower error value than the
HPR algorithm does. Consistent with our observations
in the noiseless experiments, the value of the error metric
is a reliable indicator of picture quality relative only to a
single algorithm. This is illustrated in Fig. 10 (for b
5 1.0) and Fig. 11 (for b 5 0.75), where we show typical
iterates generated by the algorithms for the same random
trial. The algorithms are compared at the 100, 200, and
400 iteration marks. In both cases, stagnation occurs
roughly around 200 iterations and little improvement is
noticeable beyond that point. The value of ES1

for each
of the iterates generated by HIO shown in Figs. 10 and 11
is lower by approximately 2% dB than those generated by

Fig. 10. Typical images recovered by the HIO (b 5 1) and HPR
(b 5 1) algorithms with noise (SNR 5 34 dB) for the data cor-
responding to Fig. 1(d) and the normalized zero-phase initial
guess shown in Fig. 1(c). (a), (b), and (c) Images reconstructed
with 100, 200, and 400 iterations of the HIO algorithm, respec-
tively. (d), (e), and (f ) Images reconstructed with 100, 200, and
400 iterations of the HPR algorithm, respectively.
HPR, but clearly the quality of the iterates generated by
the HPR algorithm is superior.

E. Coupling Algorithms
It is common practice in phase retrieval to couple algo-
rithms to obtain improved performance. For instance, it-
erating the ER after HIO has been reported to improve
the estimate produced by HIO alone.20 We perform vari-
ous experiments of this sort in Figs. 12 (for b 5 1) and 13
(for b 5 0.75) where, as in Subsection 4.D, the SNR is 34
dB. In each case, 200 iterations of HIO and HPR algo-
rithms are first performed (as seen in Subsection 4.D, this
corresponds to stagnation), and then a second algorithm
is used for another 200 iterations. These experiments
show that, although HIO does slightly benefit from a cou-
pling with the ER [compare Fig. 10(b) with Fig. 12(a) and
Fig. 11(b) with Fig. 13(a)], it is still less competitive than
HPR alone [compare Fig. 12(d) with Fig. 12(a) and Fig.
13(d) with Fig. 13(a)]. On the other hand, iterating HPR
after HIO improves significantly the estimate obtained by
HIO [compare Fig. 10(b) with Fig. 12(b) and Fig. 11(b)

Fig. 11. Typical images recovered by the HIO (b 5 0.75) and
HPR (b 5 0.75) algorithms with noise (SNR 5 34 dB) for the
data corresponding to Fig. 1(d) and the normalized zero-phase
initial guess shown in Fig. 1(c). (a), (b), and (c) Images recon-
structed with 100, 200, and 400 iterations of the HIO algorithm,
respectively. (d), (e), and (f ) Images reconstructed with 100,
200, and 400 iterations of the HPR algorithm, respectively.
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Fig. 12. Typical images recovered by coupling the HIO (b
5 1), HPR (b 5 1), and ER algorithms for the noisy data cor-
responding to Fig. 1(d) (SNR 5 34 dB) and the normalized zero-
phase initial guess shown in Fig. 1(c). (a) Images reconstructed
with 200 iterations of HIO followed by 200 iterations of ER. (b)
Images reconstructed with 200 iterations of HIO followed by 200
iterations of HPR. (c) Images reconstructed with 200 iterations
of HPR followed by 200 iterations of ER. (d) For reference, the
reconstruction obtained with 200 iterations of HPR.

Fig. 13. Typical images recovered by coupling the HIO (b
5 0.75), HPR (b 5 0.75), and ER algorithms for the noisy data
corresponding to Fig. 1(d) (SNR 5 34 dB) and the normalized
zero-phase initial guess shown in Fig. 1(c). (a) Images recon-
structed with 200 iterations of HIO followed by 200 iterations of
ER. (b) Images reconstructed with 200 iterations of HIO fol-
lowed by 200 iterations of HPR. (c) Images reconstructed with
200 iterations of HPR followed by 200 iterations of ER. (d) For
reference, the reconstruction obtained with 200 iterations of
HPR.
with Fig. 13(b)]. This shows that the behavior observed
in Fig. 7 persists in the presence of noise. Finally, iter-
ating the ER algorithm after the HPR algorithm does not
improve the estimate obtained by the HPR alone [com-
pare Fig. 12(d) with Fig. 12(c) and Fig. 13(d) with Fig.
13(c)]. This lends further support to the idea of using the
HPR as an autonomous algorithm, obviating user inter-
vention.
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