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Abstract. The convex feasibility problem asks to find a point in the

intersection of finitely many closed convex sets in Euclidean space. This

problem is of fundamental importance in the mathematical and physical

sciences, and it can be solved algorithmically by the classical method of

cyclic projections.

In this paper, the case where one of the constraints is an obtuse cone

is considered. Because the nonnegative orthant as well as the set of

positive-semidefinite symmetric matrices form obtuse cones, we cover a

large and substantial class of feasibility problems. Motivated by nu-

merical experiments, the method of reflection-projection is proposed: it

modifies the method of cyclic projections in that it replaces the projection

onto the obtuse cone by the corresponding reflection.

This new method is not covered by the standard frameworks of

projection algorithms because of the reflection. The main result states

that the method does converge to a solution whenever the underlying

convex feasibility problem is consistent. As prototypical applications, we

discuss in detail the implementation of two-set feasibility problems

aiming to find a nonnegative [resp. positive semidefinite] solution to lin-

ear constraints in Rn [resp. in Sn, the space of symmetric n· n matrices]

and we report on numerical experiments. The behavior of the method for

two inconsistent constraints is analyzed as well.
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1. Introduction

Throughout this paper, we assume that X is a Euclidean space, with

inner product Æ., .æ and induced norm k.k, and that C1, . . . , CN are closed

convex sets in X, with corresponding projectors P1, . . . , PN. The projector

corresponding to a closed convex set is explained in Definition 2.1. More-

over, we suppose that K is a closed convex cone in X, with reflector

RK = 2PK – I. We will require that K be obtuse, a notion made precise in

Definition 2.3 and broad enough to cover many interesting cones arising in

optimization, including the nonnegative orthant and the cone of positive

semidefinite matrices.

Let

C :=K˙C1˙ � � � ˙CN :

Our aim is to solve the following convex feasibility problem:

find x˛C,

where, for the most part of this paper, we assume that C„;. The convex

feasibility problem is of fundamental importance in mathematics and the

physical sciences and there exists a multitude of projection algorithms for

solving it; see, for instance, Refs. 1–6.

The motivation for this paper stems from a method that works very well

in numerical experiments, but falls outside the scope of the standard frame-

works. Specifically, we propose the method of reflection-projection: after

fixing a starting point x0, it generates a sequence via

x0 7fiRKx0 7fiP1RKx0 7fiP2P1RKx0 7fi � � � 7fiPN � � �P1RKx0=:x1

7fiRKx1 7fiP1RKx1 7fiP2P1RKx1 7fi � � � 7fiPN � � �P1RKx1=:x2

7fiRKx2 7fi � � � :

The terms just displayed form a sequence which has (xk) as a subsequence.

The update operation for (xk) can be described more concisely by

xk+1 := (PNPN–1 � � �P1RK )xk:

In Figure 1, we visualize the method of reflection-projection and con-

trast it with the classical method of cyclic projections (which arises when the

reflection is replaced by the corresponding projection) for a two-set convex
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feasibility problem involving an icecream cone and a plane in R3. Of course,

this particular example favors dramatically the method of reflection-

projection and experiments described later bear out this advantage more

generally. Nevertheless, we cannot expect the reflection-projection method to

outperform always the cyclic projection method. If the starting point, for the

example of Figure 1, is changed to the acute area on the lower right, both

algorithms will behave in essentially the same manner because the reflection

will not go deeply into the cone.

The aim of this paper is to show that the method of reflection-projection

generates a sequence which converges to a solution of the convex feasibility

problem. Moreover, experiments demonstrate that the method can yield a

solution faster than other standard methods.

We point out that the standard theory is not applicable, since the

reflector RK is nonexpansive [Lemma 2.1(ii)], but does not share any of the

common properties (Remark 2.2) typically imposed on the operators in the

general frameworks presented in Refs. 1, 2, 4, 6.

In fact, the only algorithmic schemes utilizing true reflections are clas-

sical and due to Motzkin and Schoenberg (Ref. 7) and Cimmino (Ref. 8).

However, none of the convergence results associated with these methods

cover the method of reflection-projection presented here.

The paper is organized as follows. Section 2 introduces the cones of

interest along with classical convergence results based on the Fejér monotone

sequences. Section 3 introduces abstractly our feasibility algorithm and the

convergence proof in the consistent case. In Section 4, we review affine space

projections and the Moore-Penrose inverse. This material is necessary for the

practical implementations in Rn (see Section 5) and in Sn (see Section 6).

Section 7 offers partial results on the inconsistent case and we conclude in

Section 8. A summary of the algorithms is given in the Appendix (Section 9).

Fig. 1. Contrasting behavior of cyclic projections and the method of reflection-projection for

the intersection of an icecream cone and a plane.
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2. Preliminaries

2.1. Projections

Definition 2.1. Projection and Projector. Suppose that S is a closed

convex nonempty set in X and that x˛X. Then, there exists a unique point

in S nearest to x, denoted PS(x) or PSx, and called the projection of x onto

S. Note that PSx realizes the distance from x to S,

kx – PSxk = d(x, S) := min
s˛S

kx – sk:

The induced map PS:XfiS is called the projector.

Fact 2.1. The projection PSx is characterized by PSx˛S and

supÆS – PSx, x – PSxæ#0. In particular, the projector PS is firmly non-

expansive, i.e.,

kPSx – PSyk2
+ k(I – PS)x – (I – PS)yk2

#kx – yk2
, 8x˛X, 8y˛X:

Proof. See Ref. 9, Chapter 12, or Ref. 10. u

2.2. Moreau Decomposition and Obtuse Cones

Definition 2.2. Polar Cone. Suppose that K is a closed convex cone in

X. Then, K� := {x˛X: supÆx, Kæ#0} is the negative polar cone of K. Also,

K� := –K� is the positive polar cone of K. Given x˛X, we write x+ :=PKx

and x– :=PK�x.

Fact 2.2. See Ref. 11 (Moreau). PK� = I – PK. Let x˛X. Then, x=

x+ + x– and Æx+, x–æ = 0.

Proof. See Ref. 11 or the discussion following Ref. 12, Theorem 31.5.

u

Definition 2.3. Obtuse and Self-Dual Cones. A closed convex cone K

in X is obtuse [resp. self-dual], if K�˝K [resp. K� =K ].

Remark 2.1. The notion of an obtuse cone was coined by Goffin

(Ref. 13, Section 3.2) and implicitly used by Todd (Ref. 14, Corollary 4.1).

An obtuse cone is large in the following sense:

(i) The affine span of a closed convex obtuse cone K is equal to the

entire space X; in particular, K has nonempty interior: indeed, let Y
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be the linear (equivalently, affine) span of K. Then, Y’˝K�. On

the one hand, this implies (multiply by – 1) the inclusion Y’˝K�.

On the other hand, since K is obtuse, we conclude that

Y’˝K�˝K. Altogether, Y’˝K˙K� = {0} and so Y =X.

(ii) See Theorem 3.2.1 in Ref. 13. Suppose that K is a closed convex

cone in X. Then, K is obtuse if and only if K� is acute, i.e.,

infÆK�, K�æ = 0. (‘‘� ’’ is easy to see; for ‘‘� ’’, use a separation

argument.)

The notions of an acute and an obtuse cone have proven quite useful in

optimization; see, for instance, Refs. 13 and 15–20. The self-dual cones form

an important subclass of the obtuse cones, as they include the nonnegative

orthant as well as the cone of positive semidefinite matrices: these two cones

are of central importance in modern interior-point methods (see Refs. 21, 22).

We will discuss these cones in detail in Sections 5 and 6 below.

Example 2.1. Halfspaces with Zero in the Boundary. Fix a˛Xn{0}

and let

K := {x˛X: Æa, xæ$0}:

Then,

K� = {ra:r$0}:

Hence, K�˝K, and therefore K is obtuse.

2.3. Ice Cream Cones

Definition 2.4. The ice cream cone with parameter a >0, denoted

ice(a), is defined by

ice(a) := {(x, r)˛X·R:kxk#ar}:

Note that ice(a) is a closed convex cone in X·R. When a = 1, one

obtains the so-called second-order cone which has found important appli-

cations because of the recent successes of interior-point methods for convex

programming (see Ref. 23). If X =R3, the second-order cone becomes

(x1, x2, x3, x4)˛R4:x4$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 + x2
2 + x2

3

q� �
,

i.e., the future light cone or Lorentz cone from theoretical physics.

The dual cone and the projector of an ice cream cone are known expli-

citly.
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Fact 2.3. Suppose that a >0 and (x, r)˛X·R. Then, ice�(a) = ice(1=
a), and

Pice(a)(x, r) =

(x, r), if kxk#ar,

(0, 0), if akxk# – r,

[(akxk + r)=(a2 + 1)](a x=kxk, 1), otherwise:

8><
>:

Proof. See Ref. 1, Theorem 3.3.6. u

Corollary 2.1. Suppose that a >0. Then ice(a) is obtuse � a$ 1;

ice(a) is self-dual � a = 1.

Proof. If b>0, then ice(a)˝ ice(b)�a#b; this and Fact 2.3 readily

yield the result. u

2.4. Reflector

Definition 2.5. Reflector. Suppose that K is a closed convex set in X.

Then, the reflector corresponding to K is defined by

RK := 2PK – I :

If K is a cone and x˛X, we write also

x++ :=RKx:

The following lemma collects various useful results on reflectors and

obtuse cones.

Lemma 2.1. Suppose that K is a closed convex cone in X and that x,

y are two points in X. Then:

(i) x++ = x+ – x–.

(ii) kx – yk2 – kx++ – y++k2 = 4Æx+, – y–æ + 4Æy+, – x–æ$ 0.

(iii) The reflector RK is nonexpansive, kx++ – y++k#kx – yk.
(iv) If y˛K, then y++ = y and kx – yk$ kx++ – yk.
(v) K is obtuse if and only if RK maps X onto K.

Proof. In view of Fact 2.2, we have x = x+ + x–. Now, x–˛K�; hence,

– x–˛ –K� =K�; similarly, – y–˛K�.
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(i) x++ =RKx= (2PK – I )(x) = 2x+ – (x+ + x–) = x+ – x–.

(ii) Using Fact 2.2, {x+, y+}˝K and { – x–, – y–}˝K�, we obtain

kx – yk2
– kx++ – y++ k

= k(x+ + x–) – ( y+ + y–)k2
– k(x+ – x–) – ( y+ – y–)k2

= k(x+ – y+) + (x– – y–)k2
– k(x+ – y+) – (x– – y–)k2

= 4Æx+ – y+, x– – y–æ
= 4Æx+, – y–æ + 4Æy+, – x–æ
$0:

(iii) This is immediate from (ii).

(iv) If y˛K, then y =PKy and hence y+ = y and y– = 0. By (i),

y++ = y+ – y– = y. The result now follows from (iii).

(v) (� ) By assumption on K, we have x++ = x+ + (– x–)˛
K+K�˝K+K =K.

(� ) Fix x˛K�. Then, x+ = 0 and x– = x. By assumption and (i),

x++ = x+ – x–˛K; hence, – x˛K. Since x was chosen arbitrarily in

K�, we conclude that –K� =K�˝K. u

Remark 2.2. The reflector RK [Lemma 2.1(iii)] is nonexpansive even

when K is merely assumed to be a closed convex nonempty set. The reason

is that PK is firmly nonexpansive � RK is nonexpansive; see, for instance,

Ref. 9, Theorem 12.1. Let RK be the reflector corresponding to the non-

negative orthant in the Euclidean plane. Lemma 2.1(ii) shows not only that

RK is nonexpansive, but it can be also used to demonstrate that RK does

not satisfy any of the following stronger notions: strongly nonexpansive

(Ref. 24); nonexpansive in the sense of De Pierro and Iusem (Ref. 25);

firmly nonexpansive (Ref. 2); averaging (Ref. 2); strongly attracting (Ref.

2); attracting (Ref. 2).

It is this lack of additional good properties in the sense of nonexpansive

mappings that makes the analysis of the method of reflection-projection

impossible within standard frameworks.

2.5. Fejér Monotone Sequences

Definition 2.6. Suppose that S is a closed convex nonempty set in X

and that (yk)k$ 0 is a sequence in X. Then, (yk) is Fejér monotone with

respect to S if

kyk+1 – sk#kyk – sk, 8k$0, 8s˛S:
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Fejér monotone sequences are very useful in the analysis of optimiza-

tion algorithms; see for instance Refs. 2, 26, 27. We now record a selection of

good properties that will be handy later.

Fact 2.4. Suppose that S is a closed convex nonempty set in X and

that (yk)k$ 0 is Fejér monotone with respect to S. Then:

(i) (yk) is a bounded sequence.

(ii) (d(yk, S)) is decreasing and nonnegative, hence convergent.

(iii) The sequence (PSyk) converges to some point s̄ ˛S.

(iv) (yk) converges to s̄ if and only if all cluster points of (yk) belongs

to S.

Proof. See, for instance, Refs. 2, 26, 27. u

3. Method of Reflection-Projection

The method of reflection-projection is formally expressed by

Algorithm A1.

Theorem 3.1. Suppose that C„; and K is obtuse. Let x0˛X. Then,

the sequence (xk) generated by Algorithm A1 converges to a point in C.

Proof. We proceed in several steps. Let

( yk) := (x0, x
++
0 ,P1x

++
0 , . . . , x1, x

++
1 , . . .),

i.e., the sequence implicit in the generation of the sequence (xk) with all the

intermediate terms.

Step 1. (yk) is Fejér monotone with respect to C. The reflector RK is

nonexpansive [Lemma 2.1(ii)], and so are the projections P1, . . . , PN (Fact

2.1); moreover, the intersection of the fixed-point sets of these N + 1 maps is

precisely C. It follows that (yk) is Fejér monotone with respect to C.

Step 2. (xk
++) is contained in K and each d(xk

++, Ci)fi0. Since K is

obtuse, Lemma 2.1(v) implies that (xk
++) lies entirely in K. Next, apply the

firm nonexpansiveness of P1 to the two points xk
++, PCxk

++ to obtain

kx++
k – PCx++

k k2
$kP1x

++
k – PCx++

k k2
+ kx++

k – P1x
++
k k2:
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This, Step 1, and Fact 2.4(ii) yield

d2(x++
k , C1)#d2(x++

k ,C) – d2(P1x
++
k , C)fi0:

The firm nonexpansiveness of P2 applied to the two points P1xk
++, PCP1xk

++

results analogously in

d2(P1x
++
k , C2)#d2(P1x

++
k , C) – d2(P2P1x

++
k , C)fi0:

Continuing in this fashion yields N – 2 further results, the last of which states

that

d2(PN–1 � � �P1x
++
n , CN)#d2(PN–1 � � �P1x

++
k , C) – d2(xk+1, C)fi0:

In particular,

(1) xk
++ – P1xk

++fi0,

(2) P1xk
++ – P2P1xk

++fi0,

(3) P2P1xk
++ – P3P2P1xk

++fi0, . . . ,
(N) PN–1� � �P1xk

++ – xk+1fi0.

Now, fix n˛{1, . . . , N}. Summing the null sequences of items (1) to (n), fol-

lowed by telescoping and taking the norm, yields

0#d(x++
k , Cn )#kx++

k – Pn. . .P1x
++
k kfi0:

Since n was chosen arbitrarily, we have completed the proof of Step 2.

Step 3. Each cluster point of (xk
++) lies in C. This is clear from Step 2

and the continuity of each distance function d(., Ci).

Step 4. (xk
++) converges to some point c̄˛C. On the one hand, by Step

1, the sequence (xk
++) is Fejér monotone with respect to C. On the other hand,

by Step 3, all cluster points of (xk
++) belong to C. Using Fact 2.4(iv), we

conclude altogether that (xk
++) converges to some point in C.

Step 5. The entire sequence (yk) converges to c̄. Using Step 4 and the

continuity of P1 yields the convergence of (P1xk
++) to c̄. Applying the con-

tinuity of P2, . . . , PN successively in this fashion, we conclude altogether that

(yk) converges to c̄.

Final Step. (xk) converges to c̄. This is immediate from Step 5, since (xk)

is a subsequence of (yk). u

Remark 3.1. Various comments on Theorem 3.1 are in order.

(i) Theorem 3.1 may be extended routinely in various directions by

incorporating weights, relaxation, and extrapolation parameters as in Refs.

1–4, 6. However, rather than obtaining a somewhat more general version, we

opted to present a setting that not only shows clearly the usefulness of

JOTA: VOL. 120, NO. 3, MARCH 2004 511



obtuseness, but that works also quite well in practice on the sample problems

that we investigated numerically: in fact, in Section 5.4, we compare the

method of reflection-projection to relaxed projections (the numerical results

presented there strongly support the practical usefulness of the proposed

algorithm).

(ii) Similarly, Theorem 3.1 and its proof extend to general Hilbert

spaces as follows: the sequence (xk) converges weakly to some point in C,

provided that each projector Pi is weakly continuous. Thus, the method of

reflection-projection can be used to solve convex feasibility problems with an

obtuse cone constraint along with affine constraints (for which the corre-

sponding projections are indeed weakly continuous).

(iii) In Theorem 3.1, it is impossible to strengthen the conclusion to

handle two or more obtuse cones via reflectors: indeed, consider two neigh-

boring quadrants in the Euclidean plane. The sequence of alternating

reflections will not converge if we fix a starting point in the interior of one

quadrant.

(iv) The condition C„; is essential, as the algorithm may fail to con-

verge in its absence: consider the nonnegative orthant in R2 and the half-

space {(r1, r2)˛R2: r1+r2# – 1}. For x0 := (0, 1), the method of reflection-

projection cycles indefinitely: xn ” (0, (– 1)n). See, however, Section 7 for

some positive results on the inconsistent case.

(v) The method of reflection-projection creates a sequence that is Fejér

monotone with respect to C; hence, it fits the Combettes framework (see Ref.

27, Algorithm 4.1). However, if one wants to derive Theorem 3.1 from Ref.

27, Theorem 4.3(i), then one would have to check that all weak cluster points

lie in C, which is exactly the bulk of the work in the proof of Theorem 3.1 and

hence is not advantageous.

4. Affine Subspace Projector

Throughout this short section, we assume that X and Y are Euclidean

spaces and that A is a linear operator from X to Y. Because we work with

finite-dimensional spaces, the operator A is continuous and its range,

ran A := {Ax˛Y:x˛X},

is closed. We first summarize the fundamental properties of the Moore-

Penrose inverse, taken from Chapter II of the Groetsch monograph (Ref. 28).

Fact 4.1. Moore-Penrose Inverse. There exists a unique (continuous)

linear operator A# from Y to X with AA#= Pran A and A#A = Pran A#. The
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operator A# is called the Moore-Penrose inverse of A. Moreover,

ran A#= ran A*, and the Moore-Penrose inverse can be computed via

A# =A*(AA*)# =A*(AA*jran A)–1 = (A*AjranA*)
–1A* = (A*A)#A*:

Fix, b˛Y, not necessarily in the range of A, and let b0 :=PranA(b). Then,

b0˛ran A, and S := {x˛X|Ax = b0} is an affine subspace of X.

Lemma 4.1. Affine Subspace Projector. PS(x)= x –A#(Ax – b), for

every x˛X.

Proof. Pick x˛X and let

s :=x –A#(Ax – b):

In view of Fact 2.1, we need to show that

(i) s˛S, (ii) supÆS – s, x – sæ#0:

Now, using Fact 4.1, we have

As =A(x –A#(Ax – b))

=Ax –AA#(Ax) +AA#(b)

=Ax – PranA(Ax)+ Pran A(b)

=Ax –Ax + b0 = b0:

Hence, s˛S and (i) holds. Since s˛S, we have

S = s + ker A,

where

ker A := {x˛X:Ax = 0}

is the kernel of A. By Fact 4.1,

A#(Ax – b)˛ran A# = ran A*:

Hence,

A#(Ax – b)˛( ker A)’:

This implies that

0 = Æker A, A#(Ax – b)æ = ÆS – s, x – sæ:

Therefore, (ii) is verified and we are done. u
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As an illustration, let us rederive the well-known formula for the pro-

jection onto a hyperplane.

Example 4.1. Hyperplane Projection. Suppose that a˛Xn{0} and

b˛R. Let

S = {x˛X:Æa, xæ = b}:

Then,

PS(x) = x – [(Æa, xæ – b)=kak2
]a, for every x˛X:

Proof. Let Y :=R, and define A:XfiY by Ax = Æa, xæ. It is easy to see

that

A#( y) = [y=kak2
]a:

The result now follows from Lemma 4.1. u

The following remark discusses the complications arising from con-

sidering two or more hyperplanes.

Remark 4.1. Gram Matrix. Let Y =Rm and a1, a2, . . . , am be m vec-

tors in X. This induces a linear operator A:XfiY: x7fi (Æai, xæ)i=1
m . Unless

m = 1, there is no closed form available for A#, unfortunately. Note that

AA* maps Rm to itself. Hence, after fixing a basis and switching to coordi-

nates, AA* is represented by a matrix G˛Rm ·m. It is not hard to see that G

is the Gram matrix of the vectors a1, . . . , am; i.e., Gi,j, the (i, j)-entry of G, is

equal Æai, ajæ, the inner product of the vectors ai and aj. Fact 4.1 results in

A# =A*(AA*)# =A*G#:

Thus, finding the Moore-Penrose inverse of A essentially boils down to

computing the Moore-Penrose inverse of the Gram matrix G. See also the

end of Chapter 8 in Deutsch’s recent monograph (Ref. 29).

Remark 4.2. Everything that we recorded in this section holds true

provided that X and Y are Hilbert spaces and provided that A has closed

range. This is so because all results cited from Ref. 28 hold in this setting.

For various algorithms on computing the Moore-Penrose inverse, see Ref.

28, Sections 3–5 in Chapter II.
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5. Nonnegative Orthant

Throughout this section, we assume that X :=Rn and that the obtuse

cone is simply the positive orthant,

K :=Rn
+ := {x˛Rn:xi$0, 8i}:

It is easy to see that K is a closed convex self-dual cone. We consider an

additional affine constraint, derived as follows. Let A˛Rm · n represent a

linear operator from X to Y :=Rm. Suppose that b˛Y and define

L := {x˛X:Ax = b}:

Our interest concerns the basic two-set convex feasibility problem

find x˛C :=K˙L:

This feasibility problem is of fundamental importance in various areas of

mathematics, including medical imaging (Ref. 3).

5.1. Implementation of Cone Projector and Reflector. The projection

onto the cone K is simply

(PKx)i = x+
i = max{xi, 0}, for every i˛{1, . . . , n};

thus the reflector

RK = 2PK – I

is given by

(RKx)i = jxij = max{xi, – xi} = abs (xi):

5.2. Implementation of the Affine Subspace Projector. Lemma 4.1

gives us a handle on computing PL; the key step is to find an efficient and

robust representation of A#, the Moore-Penrose inverse of A. Let r = rank

(A). We assume without loss of generality that r$ 1. If r = 0, then A = 0

and hence A# = 0˛Rn ·m.

Computation ofA# viaQRFactorization. Reference 30, Algorithm 5.4.1

describes an efficient implementation of the following factorization of A*:

A* = [Q, Q0]
R D

0 0

� �
P*,

where both Q˛Rn · r and Q0˛Rn · (n–r) have orthonormal columns, R˛Rr · r is

upper triangular and of full rank, D˛Rr · (m–r), and finally P˛Rm ·m is a
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permutation matrix, hence orthogonal. In practice, Q0 is not computed, since

A*P =Q[R, D]:

By Fact 4.1, we have

A# =A*(AA*)#

=Q[R D]P* P

R*

D*

2
64

3
75Q*Q[R D]P*

2
64

3
75
#

=Q[R D]P* P

R*R R*D

D*R D*D

2
64

3
75P*

2
64

3
75
#

:

Implementation of PL via QR Factors. After permuting the rows of

[A, b] according to P* and removing redundant constraints if necessary, we

assume without loss of generality that P* = I and r =m#n. Then, D dis-

appears altogether and the previous expression for A# simplifies to

A#=QR – *:

We can detect whether L is nonempty by comparing the column rank of

[A, b] to r. Assuming L„; and utilizing Lemma 4.1, the projection of x˛X
onto L now becomes

PL(x) = x –A#(Ax – b)

= x –QR – *(Ax – b):

In large-scale applications, one needs to store Q and R in compact form

using Householder reflections; see Ref. 30, Section 5.2.1 for further infor-

mation. Since A =R*Q*, this projection can be expressed also as

PL(x) = x –QR – *(Ax – b)

= x –QQ*x+QR – *b

= (I –QQ*)x+QR – *b;

however, especially when A is sparse, this is not preferable in terms of cost or

robustness because of the term involving QQ*.

5.3. Complete Implementation of the Algorithm. We present now the

method of reflection-projection (Algorithm A2) for an affine constraint and

the nonnegative orthant, based on the material developed earlier in this

section. An important feature is that we allow arbitrary input data [A, b]
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with no restrictions on the relative size of the matrix A˛Rm · n or on its

rank. We compare first the (numerical) ranks of A and [A, b], to determine

whether L is nonempty. If it is, then the constraints are permuted and

redundant constraints are removed.

The termination criteria in the actual implementation go somewhat

further than the abstract formulation of Algorithm A1: Based on the analysis

in Section 7, a heuristic attempt to detect a possible inconsistency of the

feasibility problem, i.e., C =K˙L = ; even though L„;. To deal with

inconsistency, a stopping criterion based on the analysis in Section 7 is pro-

posed; see Remark 7.5.

After the initial cost of the QR factorization, which is O(n3) in the dense

matrix case (Ref. 30, Section 5.2.1), each iteration is fast, since the cost of a

triangular solve and a matrix-vector multiplication is only O(n2); see Ref. 30,

Section 3.1.

5.4. Numerical Experiments. Complete implementations of the algo-

rithms described below, for both OCTAVE
5 and MATLAB

6 are available at

Ref. 31. These implementations were used to generate all the numerical

results in this paper.

To highlight some advantages of using the method of reflection-

projection over (relaxed) projections, we devised an experiment whose details

and results are illustrated now. We generated a large set of random feasible

problems of varying size. On these problems, we ran a sequence of alternat-

ing relaxed projection algorithms. More precisely, representing the relaxed

projection onto the cone by

x 7fi ((1 – aK )I + aKPK )x, aK ˛(0, 2],

and the relaxed projection onto the flat by

x 7fi ((1 – aL)I + aLPL)x, aL˛(0, 2),

we measured the performance of iterating the map

((1 – aL)I + aLPL)((1 – aK )I + aKPK )

for a fixed pair of relaxation parameters (aK, aL)˛(0, 2]· (0, 2).

If the relaxation parameter is equal to 1, then the relaxed projection is

actually an exact projection; similarly, if it is equal to 2, then we obtain a

reflection. Thus, the method of alternating projections corresponds to the

choice (aK, aL) = (1, 1), whereas the new method of reflection-projection is

obtained by setting (aK, aL) = (2, 1). If aK<2, then the iterates are known to

5OCTAVE is freely redistributable software available at www.octave.org.
6MATLAB is a registered trademark of The MathWorks, Inc.

JOTA: VOL. 120, NO. 3, MARCH 2004 517



converge; see Refs. 1, 2, 4, 6. And if aK = 2 but aL„1, then a convergence

result can be obtained easily by a straightforward modification of the proof

of Theorem 3.1; see also Remark 3.1(i).

We searched experimentally for the optimal relaxation parameters by

generating a set of several thousand problems, with fixed n = 64 and various

m in the range 2<m<62. We solved each of these problems by varying the

relaxation parameters on the interval [0, 2] in small increments. Figure 2

displays the average number of iterations for the problems, for every com-

bination of the relaxation parameters. This experiment suggests that the

optimal strategy is to project exactly on the flat (aL = 1), but to reflect into

the cone (aK = 2): this corresponds precisely to the method of reflection-

projection (Algorithm A2). Of course, a different set of problems may sug-

gest a different combination of the relaxation parameters.

6. Positive-Semidefinite Cone

In this section, we consider the Euclidean space of all real symmetric

n· n matrices,

X :=S
n
:= {X˛Rn · n:X =X*},

with

ÆX , Y æ := trace(XY ), for X , Y ˛X:
For X˛X, we write X�0 to indicate that X is positive semidefinite, and we

collect all such matrices in the set

K :=S
n
+ := {X˛X:X � 0}:

Fig. 2. Iteration count behavior for variations in the flat parameter 0<aL<2 and the cone

parameter 0<ak#2.
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The Fejér theorem states that K is a closed convex self-dual cone; see Ref. 32,

Corollary 7.5.4. This setting lies at the heart of modern optimization; see for

instance Refs. 33, 34.

Building upon Section 5, we consider an affine constraint given by

finitely many linearly independent vectors A1, . . . , Am in X and a vector

b˛Rm. Linear independence may be enforced as described in our discussion

of Algorithm A2 in Section 5.3. Our assumption is equivalent to the surjec-

tivity of the operator

A:XfiRm:X 7fi [ÆA1,X æÆA2, X æ . . . ÆAm, X æ]*:

Hence,

L := {X˛X:A(X ) = b}„;

and we aim to solve the two-set feasibility problem

find X˛C :=K˙L:

For simplicity, we assume consistency, i.e., C„;. The inconsistent case is

quite subtle: the two constraints may have no points in common, yet their

gap may be zero (see Remark 7.4); such behavior is impossible for the

(polyhedral) setting of the previous Section 5.

The motivation for considering this problem stems from the interior-

point methods for solving semidefinite programming problems. These algo-

rithms fall into two disjoint classes: the so-called infeasible methods (which

do not require a feasible starting point) and the feasible methods. The fea-

sible starting point required for algorithms of the latter class is precisely a

solution of the above feasibility problem. See Refs. 34, 35 and references

therein for further details and background on semidefinite programming. As

we illustrate in this section, the method of reflection-projection is well-suited

to find such a feasible starting point.

6.1. Implementation of the Cone Projector and Reflector. Fix an arbi-

trary X˛X. Since X is symmetric, we can factor X =U*DU, where U is an

orthogonal matrix whose columns are the eigenvectors u1, . . . , un of X and

D is a diagonal matrix whose diagonal entries li are the corresponding

eigenvalues:

liui =Xui, for all i:

Denote by D+ the diagonal matrix in X with

(D+)i, i = (li)
+ = max{li, 0}:
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Using the complete eigenvalue decomposition (see e.g. Ref. 30, Section

5.5.4), we have

PK (X ) =U*D+U ;

equivalently,

PK (X ) = �
i:li > 0

liuiui*:

The bulk of the work in computing the projection PK(X ) or the reflection

RK (X ) = 2PK (X ) –X

lies thus in the determination of the eigenvalues and eigenvectors of X.

The eigendecomposition of a symmetric matrix is an intricate but well-

studied problem, and algorithms have been developed for which code is

(sometimes freely) available. We refer the reader to the classical Ref. 36 and

to the more recent treatment in Ref. 37. Note that, in order to compute

PK(X), we do not need the complete decomposition; rather, the eigenpairs

corresponding to either the positive or negative eigenvalues are sufficient.

For actual numerical implementations, a Lanczos or Arnoldi process

appears to be most appropriate, especially for large sparse matrices (Ref. 37).

From now on, we consider the decomposition as a given black-box routine.

6.2. Implementation of the Affine Subspace Projector. The space of

real symmetric n· n matrices is a proper subspace of the space of real n· n

matrices: S
n Rn · n; in fact, the dimension of X =Sn is

t(n) := 1 + 2 + � � � + n = n(n + 1)=2,

the nth triangular number. From a numerical point of view, it is much faster

and more memory efficient to work with corresponding vectors in Rt(n)

rather than with (symmetric and hence redundant) matrices in Rn · n. Con-

sequently, we start by describing the isometry

svec:S
nfiRt(n),

which takes the first i entries in column i, stacks them (proceeding from left

to right) into a long column vector

[X1, 1 X1, 2 X2, 2 X1, 3 X2, 3 X3, 3 . . .X1, n X2, n . . .Xn, n]*,

and finally multiplies each offdiagonal element by
ffiffiffi
2

p
to guarantee that the

norm kXk, taken in Sn, agrees with the norm ksvec(X )k, taken in Rn. More

formally, define the following two index functions

svecind(i, j) := t( j – 1) + i, 1# i# j#n,
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and

smatind(k) := (k – j( j – 1)=2, j),

j :=Ceiling of [(1=2)(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8k

p
– 1)] and 1#k# t(n),

which are inverses of each other (Ref. 44). For X˛Sn and 1#k# t(n), the

isometry svec is described by

svec(X )k =
Xsmatind(k), if k is triangular;ffiffiffi

2
p

Xsmatind(k), otherwise:

(

And, for x˛Rt(n) and 1# i, j#n, the inverse smat of svec is given explicitly by

smat(x)i, j =

(1=
ffiffiffi
2

p
)xsvecind(i, j), if i< j,

xsvecind(i, j), if i = j,

(1=
ffiffiffi
2

p
)xsvecind(j, i), if i> j:

8>><
>>:

Now, define the m· t(n) matrix

sop(A) := [(svec(A1))*(svec(A2))* . . . (svec(Am))*]*:

For X˛X, the affine constraint in Sn is thus reformulated equivalently in

Rt(n) by

A(X ) = b � [sop(A)]svec(X ) = b:

Therefore, the computation of PL(X) is reduced to the case considered pre-

viously in Section 5.2.

6.3. Formulation of the Algorithm. For the sake of brevity, we shall

omit the steps dealing with infeasibility and redundancy, since they are

similar to those taken at the beginning of Algorithm A2 (see also Ref. 31).

Algorithm A3 produces sequences denoted (Xk) and (Xk
++) and repre-

senting the successive iterates onto the flat and into the cone,

X++
0 7fi

PL

X1 7fi
RK

X++
1 7fi

PL

X2 7fi
RK

X++
2 7fi

PL

X3 7fi
RK � � � ,

where the loop invariant maintains the iterates within the positive definite

cone. Therefore, the termination criterion involves only the distance to the

flat. The reason for exiting the inner loop after a reflection is that the solution

returned by the algorithm is numerically positive definite in most cases. This

may be useful when strictly interior solutions are sought as is the case for

feasible interior-point algorithms of semidefinite programming.
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6.4. Numerical Experiments. Table 1 presents the results of Algo-

rithm A3 on random semidefinite problems; the code used to generate these

data is available at Ref. 31. Feasibility tolerance was set to 10–5. The actual

distance to the flat is indicated by the column kx – PL(x)k. We do not indi-

cate the distance to the cone, since this is always 0. For these problems, we

set n = 15 and the entries in Table 1 average the number of iterations for

each size after 40 runs. The reader will notice that the algorithm performs

very well if the number of constraints is low, but the performance then

degrades as the feasible set gets smaller.

7. Results for the Inconsistent Case

In this section, we discuss the behavior of the algorithm for two possibly

nonintersecting constraints. The reason for this restriction is this: even for

the mathematically easier case of cyclic projections, the geometry and

behavior is only fully understood for two sets; see Ref. 38 for a survey. On

the other hand, the results of this section do hold for two general closed

convex sets, i.e., neither is assumed to be an obtuse cone. Nonintersecting

constraints occur frequently in practical problems, due to measurement or

roundoff errors. Hence, it is crucial to understand at least partially the

behavior of the method of reflection-projection in the inconsistent case.

Table 1. Experiment on random semidefinite feasibility problems.

m kx – PL(x)k Iter m kx – PL(x)k Iter

1 1.000799e-16 5 17 9.856825e-07 386

2 9.279782e-16 30 18 9.878404e-07 428

3 8.530127e-07 54 19 9.874863e-07 454

4 8.917017e-07 75 20 9.621321e-07 495

5 9.767166e-07 96 21 9.959647e-07 531

6 9.867892e-07 118 22 9.912171e-07 575

7 9.977883e-07 134 23 9.950764e-07 627

8 9.543684e-07 158 24 9.826544e-07 790

9 9.400719e-07 175 25 9.918322e-07 748

10 9.402718e-07 197 26 9.981378e-07 883

11 9.411396e-07 217 27 9.989317e-07 931

12 9.500699e-07 246 28 9.938861e-07 961

13 9.707506e-07 263 29 9.928170e-07 1079

14 9.703939e-07 296 30 9.959961e-07 1327

15 9.802466e-07 319 31 9.897021e-07 1406

16 9.923299e-07 351 32 9.973459e-07 1864
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We start by reviewing the geometry of the problem, which is indepen-

dent of the algorithm under consideration. For the rest of this section, we

assume that A and B are two closed convex nonempty sets in X. We let

u :=Pcl(B – A)(0) and d := kuk = inf kA – Bk

be the gap between A and B. Here cl(B –A) denotes the closure of the Min-

kowski difference

B –A := {b – a:a˛A, b˛B}:

We collect the points in A and B where the gap is attained in the following

sets:

E := {a˛A:d(a, B) = d},

F := {b˛B:d(b, A)= d}:

The sets E and F thus generalize the idea of the intersection of the two sets A

and B. Note, however, that E and F may be empty: consider in the Euclidean

plane the horizontal axis and the epigraph of r7fi1=r, i.e.,

{(r1, r2)˛R
2:0<1=r1#r2}:

Definition 7.1. Set of Fixed Points. If T:XfiX is a map, then

Fix(T )= {x˛X:T(x) = x}

denotes the set of fixed points of T.

Fact 7.1.

(i) E= Fix(PAPB) and F =Fix(PBPA).

(ii) E+ v = F, E=A˙ (B – v), and F= (A+ v)˙B.

(iii) Suppose that e˛E and f˛F. Then, PBe = e + v and PAf = f – v.

Proof. For (i), see Ref. 39; for (ii) and (iii), see Ref. 40. u

The method of reflection-projection consists of computing the iterates

of the maps PARB and RBPA; consequently, we are interested in the fixed-

point sets of these compositions.

Lemma 7.1. Fix(PARB) = E and Fix(RBPA) = F + v.
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Proof. Let (ā, b̄) be a fixed point pair,

ā = PAb̄ and b̄ =RBā:

Fix a˛A and b˛B arbitrarily. Then, using Fact 2.1, ā =PAb̄ is charac-

terized by

ā˛A and Æa – ā, b̄ – āæ#0:

Similarly, b̄ =RBā is equivalent to

(ā + b̄)=2˛B and Æb – (ā + b̄)=2, ā – b̄æ#0:

Adding the inequalities yields

Æb – a – ((ā + b̄)=2 – ā), ā – b̄æ#0,

which shows that

(ā + b̄)=2 – ā = Pcl(B – A)(0)= v:

Fact 7.1 now shows that

ā˛E and b̄ =RBā = ā + 2v˛F + v:

Hence,

Fix(PARB)˝E and Fix(RBPA)˝F + v:

The reverse inclusions are shown similarly, using once again Fact 7.1. u

Remark 7.1. Viewed from fixed-point theory, the compositions RBPA

and PARB are nonexpansive maps with little extra structure. For instance,

they lack asymptotic regularity: indeed, in X =R2, let B be the nonnegative

orthant and let A be the line {(r, – r – 1): r˛R}. Let a0 = (0, – 1) be the

starting point for the sequence ak :=PARBak–1 generated by the method of

reflection-projection. Then, the orbit (ak) consists of two distinct sub-

sequences,

a2k = (0, – 1) and a2k + 1 = (– 1, 0):

Hence, (ak) does not converge even though the distance between the two sets

is uniquely attained at (– 1=2, – 1=2)˛A and (0, 0)˛B. In particular, ak – ak+1

9 0, which means that the sequence (ak) is not asymptotically regular.

On the other hand, we have the following positive result.

Lemma 7.2. Let bk :=RBak and ak+1 :=PAbk be the sequence generated

by the method of reflection-projection, with starting point a0. Then,

kak – ak2
$kak+1 – PARBak2

+ k(bk – ak+1) – (RBa – PARBa)k2
, 8a˛A:
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Furthermore, if the gap between A and B is realized, i.e., E„;, then:

(i) kak – ek2$ kak+1 – ek2 + k(bk – ak+1) – 2vk2, 8e˛E. In particular,

(ak) is Fejér monotone with respect to E.

(ii) bk – ak+1fi2v.

(iii) Every cluster point of (ak + ak+1)=2 belongs to E.

(iv) Every cluster point of (PBak) belongs to F.

Proof. The inequality follows, since RB is nonexpansive and PA is

firmly nonexpansive.

(i) This is a special case of the inequality, since

RBe = e + 2v and PARBe = e;

see Lemma 7.1 and Fact 7.1.

(ii) This is clear from (i).

(iii) and (iv). Observe that (ii) is equivalent to PBak – (ak + ak+1)=2fiv.

Now, the first term in this difference belongs to B and the second one to A.

The result now follows directly from Ref. 40, Lemma 2.3. u

Remark 7.2. We do not know whether the sequence of averages

((ak + ak+1)=2) must converge to a point in E. This will happen if E is a

singleton, as is the case in the example presented in Remark 7.1.

Remark 7.3. Lack of Monotonicity. In the Euclidean plane, let

A := {(r, – 3r – 3):r˛R}

and let B be the nonnegative orthant. Further, set

a0 := (0, – 3)˛A

and define recursively

bn :=RB(an) and an+1 :=PA(bn), for n$0:

It is easy to see that

ka1 – b0k<ka2 – b1k:

Hence the sequence (kak+1 – bkk) is not decreasing. However, monotonicity

properties of this kind lie at the heart of the analysis of the method of cyclic

projections and also of the Dykstra algorithm; see Ref. 40, Lemma 4.4(ii)

and Lemma 3.1(iv). The lack of this type of monotonicity appears to make

the analysis of the inconsistent case much more difficult.
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Remark 7.4. Attainment versus Nonattainment. Whether or not the

gap between the constraints A and B is realized depends essentially on the

relative geometry of the sets. Some sufficient conditions for attainment are

discussed in Ref. 40, Section 5. Perhaps, the most important case in appli-

cations occurs when one constraint is affine and the other is either the non-

negative orthant or the cone of positive-definite matrices. We explicitly

record the following.

(i) If A is affine and B is the nonnegative orthant, then the gap between

A and B is always realized. The reason is that, if A and B are both polyhedral,

then so is their difference; in particular, B –A is closed. See Ref. 40, Facts

5.1(ii) and also Ref. 38 for additional information.

(ii) If A is affine and B is the cone of positive semidefinite matrices,

then the gap between A and B need not be realized at a pair of points; see

Refs. 41, 42 for concrete examples.

Remark 7.5. Stopping Criterion for Algorithm A2. In Section 5, two

constraints are considered: adapting to the notation of this section, the

obtuse cone is B :=R+
n , and the other constraint A is affine. Let

bk :=RBak and ak+1 :=PAbk,

for some starting point a0 and let k$ 0. This is precisely the iteration of

Algorithm A2. In view of Remark 7.4(i), the gap between A and B is

attained. Moreover, by Lemma 7.2(ii),

wk :=bk – ak+1fi2v;

hence,

kwk–1 – wkk=(1 + kwkk)fi0:

Consequently, Algorithm A2 will eventually stop even if A and B have no

points in common. The final vector wk is an approximation of twice the gap

vector.

The following remark is due to one of the referees.

Remark 7.6. Detecting Infeasibility. Consider the setting of Lemma

7.2. Assume that A˙B„; and that an upper bound r of d(a0, A˙B) is

known. Lemma 7.2(i) and telescoping yields readily

�
k
kbk – ak+1k2

#d2(a0, A˙B)#r2:

Therefore, if one observes that a partial sum of �kkbk – ak+1k2 exceeds r2,

then one can infer that A˙B is empty.
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8. Conclusions

We presented a new algorithm, the method of reflection-projection, for

solving the convex feasibility problem. It aims to find a point in the inter-

section of finitely many closed convex sets, where one of these sets is an

obtuse cone. The method is similar to cyclic projections, but it is falls outside

the standard frameworks and hence requires a separate proof. Experimental

results indicate better performance on some problem sets.

We have given detailed instructions for the feasibility problems invol-

ving affine constraints and either the nonnegative orthant or the positive

semidefinite cone, both of which are of practical importance. In the former

case, in addition to a convergence proof of the algorithm on consistent

problems, we have a theoretical detection mechanism of inconsistency. This

criterion leads to the implementation of an effective heuristics.

One particularity of the method of reflection-projection is that it yields

easily a strictly positive solution in most instances if the last step of the inner

loop is the reflection, as we have described and implemented. This is of

particular interest in the case of the semidefinite feasibility problem, since the

method may then be used as a preliminary phase for feasible interior-point

methods of semidefinite programming. We are currently considering such a

multiphase approach.

9. Appendix: Summary of Algorithms

Algorithm A1. Method of reflection-projection.

Step 0. Initialization. Starting point x0˛X and set k = 0.

Step 1. Termination. If distance of xk to each set K, C1, . . . , CN is 0,

exit.

Step 2. Reflection into the Cone: xk
++ :=RKxk.

Step 3. Cyclic Projections onto the Sets: xk+1 :=PNPN–1� � �P1xk
++.

Step 4. Update the Iterate: Set k :=k + 1 and go back to Step 1.

Algorithm A2. Method of reflection-projection for {x˛Rn|Ax = b}˙R+
n .

Step 0. Initialization. Obtain data A˛Rm · n, b˛Rm. Start xcone :=
1˛Rn. Compute rank-revealing QR factorizations [A, b]*P0 =

Q0R0, and A*P=QR. If the ranks differ, then quit; else,

compute the index of nonzero diagonal elements I := (|diag

(R)| >10–13kAk) and permute A :=P(I )*A, Q :=Q(I ), R :=R(I ),

b :=P(I )*b.

Step 1. Flat Projection. Compute the residual r :=Axcone – b. Solve the

triangular system R*y = r. Compute the projection onto flat

xflat :=xcone –Qy and the distance to flat d := kxcone – xflatk.
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Step 2. Gap. Compute an estimate of the gap w :=xcone – xflat.

Step 3. Cone Reflection. Compute xcone := abs(xflat).

Step 4. Termination. If distance to flat is below tolerance, exit with

success. If kw – (xcone – xflat)k=(1 + kwk) is below tolerance exit

with failure. Go back to Step 1.

Algorithm A3. Method of reflection-projection for {x˛Sn|A(X) =

b}˙S+
n .

Step 0. Initialization. Given data A1, A2, . . . , Am˛Sn, b˛Rm.

Factor [sop(A)]* =QR after handling infeasibility as in Algo-

rithm A2. Set the initial point to the identity X := I˛Sn;

x := svec(X).

Step 1. Flat Projection. Compute the residual r := sop(A)x – b. Solve

the triangular system R*y = r. Compute the projection onto

flat xflat :=x –Qy, X := smat(xflat), and distance to flat d :=
kx – xflatk.

Step 2. Cone Reflection. Compute eigendecomposition X =VLV*.

Extract positive values L++ := abs(L); compute reflection

X :=VL++V*;x := svec(X ):
Step 3. Termination. If distance to flat is below tolerance, exit with

success. Go back to Step 1.
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trol and Information Sciences, Edited by J. Henry and J. P. Yvon, Springer

Verlag, London, UK, Vol. 197, pp. 187–194, 1994.

16. CEGIELSKI, A., A Method of Projection onto an Acute Cone with Level Control

in Convex Minimization, Mathematical Programming, Vol. 85, pp. 469–490, 1999.

17. CEGIELSKI, A., Obtuse Cones and Gram Matrices with Nonnegative Inverse, Linear

Algebra and Its Applications, Vol. 335, pp. 167–181, 2001.

18. CEGIELSKI, A., and DYLEWSKI, R., Residual Selection in a Projection Method

for Convex Minimization Problems, Optimization, Vol. 52, pp. 211–220, 2003.

19. KIWIEL, K. C., The Efficiency of Subgradient Projection Methods for Convex

Optimization, Part 2: Implementations and Extensions, SIAM Journal on Control

and Optimization, Vol. 34, pp. 677–697, 1996.

20. KIWIEL, K. C., Monotone Gram Matrices and Deepest Surrogate Inequalities in

Accelerated Relaxation Methods for Convex Feasibility Problems, Linear Algebra

and Its Applications, Vol. 252, pp. 27–33, 1997.
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