Abstract

A new iterative method for finding the projection onto the intersection of two closed convex sets in a Hilbert space is presented. It is a Haugazeau-like modification of a recently proposed averaged alternating reflections method which produces a strongly convergent sequence.

Keywords: Best approximation problem, convex set, projection, strong convergence.

1 Introduction

Throughout this paper,

\[X \text{ is a real Hilbert space with inner product } \langle \cdot | \cdot \rangle \text{ and induced norm } \| \cdot \|, \]

and

\[A \text{ and } B \text{ are two closed convex sets in } X \text{ such that } C = A \cap B \neq \emptyset. \]

Given a point \(x \in X \), the problem under consideration is the best approximation problem

\[\text{find } c \in C \text{ such that } \| x - c \| = \inf \| x - C \|. \]

This problem, which was already studied by von Neumann in the 1930s in this general Hilbert space setting, is of fundamental importance in applied mathematics (see [5] for historical references, recent applications, algorithms, and further references).

*Mathematics, Irving K. Barber School, UBC Okanagan, Kelowna, B.C. V1V 1V7, Canada. E-mail: heinz.bauschke@ubc.ca.

†Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie – Paris 6, 75005 Paris, France. E-mail: plc@math.jussieu.fr, 33+1 4427 6319 (Voice), 33+1 4427 7200 (Fax).

‡Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553, U.S.A. E-mail: rluke@math.udel.edu.
The aim of this note is to present a new strongly convergent method — termed *Haugazeau-like Averaged Alternating Reflections* (HAAR) — for finding the solution of (3) iteratively. This algorithm is a modification of the *Averaged Alternating Reflections* (AAR) scheme, which we recently introduced in [4]. To describe AAR, we require some notation from convex analysis. Given any nonempty closed convex set S in X, denote the projector (best approximation operator) onto S by P_S. Further, let I be the identity operator on X and let $R_S = 2P_S - I$ be the reflector with respect to S. We recall that the normal cone to S at $x \in S$ is defined by $N_S(x) = \{ x^* \in X \mid (\forall s \in S) \langle x^* | s - x \rangle \leq 0 \}$.

Both AAR and HAAR rely upon the operator

$$T = \frac{1}{2}R_AR_B + \frac{1}{2}I,$$

and their analyses require the nonempty closed convex cone

$$K = N_{B-A}(0).$$

We are now ready to describe AAR and its asymptotic behavior (see also [4] for background).

Fact 1.1 (AAR) Suppose that $x \in X$. Then the sequence of averaged alternating reflections (AAR) $(T^n x)_{n \in \mathbb{N}}$ converges weakly to a point in

$$\text{Fix } T = \{ z \in X \mid Tz = z \} = C + K.$$

Moreover, the sequence $(P_BT^n x)_{n \in \mathbb{N}}$ is bounded and each of its weak cluster points lies in C.

Proof. The identity (6) was proved in [4, Corollary 3.9]. The statements regarding weak convergence and weak cluster points follows from [8, Theorem 1] applied to the normal cone operators N_A and N_B. (See also [3, Fact 5.9] and [4, Theorem 3.13(ii)].) □

Fact 1.1 implies that the weak cluster points of the sequence $(P_BT^n x)_{n \in \mathbb{N}}$ solve the convex feasibility problem

$$\text{find } c \in C.$$

Although such points solve (7), they may nonetheless be neither strong cluster points nor the solution of the best approximation problem (3) (see [4, Section 1] for a counterexample). These shortcomings of AAR motivated us to look for variants of AAR with better convergence properties.

In Section 2, we investigate the relative geometry of the sets A and B, culminating in the formula

$$P_B P_{C+K} = P_C$$

(see Corollary 2.9). This identity, Fact 1.1, and a consequence of the weak-to-strong convergence principle [2] lead in Section 3 to the precise formulation of HAAR. A crucial ingredient of HAAR is Haugazeau’s [7] explicit projector onto the intersection of two halfspaces. Our main result (Theorem 3.3) guarantees strong convergence to the nearest point in C, i.e., to the solution of (3).

2 Relative geometry of two sets

We shall utilize the following notions from fixed point theory; see, e.g., [6].
Definition 2.1 Suppose that \(R : X \to X \). Then:

(i) \(R \) is firmly nonexpansive, if

\[
(\forall x \in X)(\forall y \in X) \quad \|Rx - Ry\|^2 + \|(I - R)x - (I - R)y\|^2 \leq \|x - y\|^2.
\]

(ii) \(R \) is nonexpansive, if

\[
(\forall x \in X)(\forall y \in X) \quad \|Rx - Ry\| \leq \|x - y\|.
\]

It is well known, for example, that the projector onto a nonempty closed convex set is firmly nonexpansive.

Fact 2.2 Suppose that \(R : X \to X \). Then \(R \) is firmly nonexpansive if and only if \(2R - I \) is nonexpansive.

Proof. See [6, Theorem 12.1]. \(\square \)

Fact 2.3 Suppose that \(S \) is a nonempty closed convex set in \(X \) and that \(x \in X \). Then there exists a unique point \(P_S x \in S \) such that \(\|x - P_S x\| = \inf \|x - S\| \). The point \(P_S x \) is characterized by

\[
P_S x \in S \quad \text{and} \quad (\forall s \in S) \quad \langle s - P_S x \mid x - P_S x \rangle \leq 0.
\]

The induced operator \(P_S : X \to S \) : \(x \mapsto P_S x \) is called the projector onto \(S \); it is firmly nonexpansive and consequently, the reflector \(R_S = 2P_S - I \) is nonexpansive.

The following property will be utilized repeatedly.

Fact 2.4 Suppose that \(S \) is a nonempty closed convex set in \(X \) and that \(z \in X \). Then for every \(x \in X \), we have \(P_z + S x = z + P_S(x - z) \).

Proof. Use (10). \(\square \)

We record two additional auxiliary results.

Fact 2.5 Suppose that \(U \) and \(V \) are two nonempty closed convex sets in \(X \). Suppose further that \(u \in U \) and that \(v \in V \). Then \(N_{U + V}(u + v) = N_U(u) \cap N_V(v) \).

Proof. See, e.g., [1, Section 4.6]. \(\square \)

Proposition 2.6 Suppose that \(U \) and \(V \) are two nonempty closed convex sets in \(X \) such that \(U \perp V \). Then \(U + V \) is closed and \(P_{U + V} = P_U + P_V \).
Proof. Suppose that \((u_n)_{n \in \mathbb{N}}\) and \((v_n)_{n \in \mathbb{N}}\) are sequences in \(U\) and \(V\), respectively, such that \(u_n + v_n\) converges. For every \(\{m, n\} \subset \mathbb{N}\), we have
\[
\|u_n + v_n - (u_m + v_m)\|^2 = \|u_n - u_m\|^2 + \|v_n - v_m\|^2.
\]
Hence \((u_n)_{n \in \mathbb{N}}\) and \((v_n)_{n \in \mathbb{N}}\) are both Cauchy sequences, since \((u_n + v_n)_{n \in \mathbb{N}}\) is. Thus \((u_n)_{n \in \mathbb{N}}\) and \((v_n)_{n \in \mathbb{N}}\) are both convergent, which implies that \(\lim_{n \to \infty} u_n + v_n \in U + V\).

Now let \(x \in X\), \(u \in U\), and \(v \in V\). Since \(\{u - P_U x, -P_U x\} \perp \{v - P_V x, -P_V x\}\), Fact 2.3 implies that
\[
\langle u + v - P_U x - P_V x \mid x - P_U x - P_V x \rangle = \langle u - P_U x \mid x - P_U x \rangle + \langle v - P_V x \mid x - P_V x \rangle
\]
\[
= \langle u - P_U x \mid x - P_U x \rangle + \langle v - P_V x \mid x - P_V x \rangle
\]
\[
\leq 0.
\]
Using Fact 2.3 again, it follows that \(P_{U+V} x = P_U x + P_V x\). □

Proposition 2.7 Suppose that \(c \in C\). Then \(K = N_B(c) \cap (-N_A(c)) \subset (C - C)\perp\).

Proof. Using (5) and Fact 2.5, we deduce that
\[
K = N_{B-A}(0) = N_{B+(-A)}(c + (-c)) = N_B(c) \cap N_A(-c) = N_B(c) \cap (-N_A(c)).
\]
Let \(x \in K\). By (12), \(\sup \langle x \mid B - c \rangle \leq 0\) and \(\sup \langle -x \mid A - c \rangle \leq 0\). Since \(C = A \cap B\), it follows that \(\sup \langle x \mid C - c \rangle \leq 0\) and that \(\sup \langle -x \mid C - c \rangle \leq 0\). Therefore, \(x \in (C - c)\perp = (C - C)\perp\). □

Theorem 2.8 Suppose that \(x \in X\) and that \(c \in C\). Then \(P_{C+K} x = P_C x + P_K(x - c)\).

Proof. Set \(L = C - C\). Then \(C - c \subset L\) and, by Proposition 2.7, \(K \subset L\perp\). Corollary 2.4 and Proposition 2.6 yield
\[
P_{C+K} x = P_{c+((C-c)+K)} x
\]
\[
= c + P_{(C-c)+K}(x - c)
\]
\[
= c + P_{C-c}(x - c) + P_K(x - c)
\]
\[
= P_C x + P_K(x - c),
\]
which completes the proof. □

Corollary 2.9 Suppose that \(x \in X\). Then \(P_B P_{C+K} x = P_C x\).

Proof. Since \(P_C x \in C\), Theorem 2.8 implies that \(P_{C+K} x = P_C x + P_K(x - P_C x)\). Hence, using Proposition 2.7, we deduce that
\[
P_{C+K} x - P_C x = P_K(x - P_C x) \in K \subset N_B(P_C x).
\]
As \(P_C x \in B\), this shows that \(P_B P_{C+K} x = P_C x\). □
3 Main result

Definition 3.1 Suppose that \((x, y, z) \in X^3\) satisfies

\[
\{ w \in X \mid \langle w - y \mid x - y \rangle \leq 0 \} \cap \{ w \in X \mid \langle w - z \mid y - z \rangle \leq 0 \} \neq \emptyset.
\] \hspace{1cm} (15)

Set

\[
\pi = \langle x - y \mid y - z \rangle, \quad \mu = \|x - y\|^2, \quad \nu = \|y - z\|^2, \quad \rho = \mu \nu - \pi^2,
\] \hspace{1cm} (16)

and further

\[
Q(x, y, z) = \begin{cases}
z, & \text{if } \rho = 0 \text{ and } \pi \geq 0; \\
x + (1 + \pi/\nu)(z - y), & \text{if } \rho > 0 \text{ and } \pi \nu \geq \rho; \\
y + (\nu/\rho)(\pi(x - y) + \mu(z - y)), & \text{if } \rho > 0 \text{ and } \pi \nu < \rho.
\end{cases}
\] \hspace{1cm} (17)

In [7], Haugazeau introduced the operator \(Q\) as an explicit description of the projector onto the intersection of the two halfspaces defined in (15). He proved in [7, Théorème 3-2] that the sequence \((y_n)_{n \in \mathbb{N}}\) defined by \(y_0 = x\) and

\[
(\forall n \in \mathbb{N}) \quad y_{n+1} = Q(x, y_n, (1 - \lambda_n)y_n + \lambda_n R y_n)
\] \hspace{1cm} (18)

converges strongly to \(P_{C\times} x\). The next result is a particular application of the weak-to-strong convergence principle of [2], which will be used to reach the same conclusion for the proposed HAAR method.

Fact 3.2 Suppose that \(R: X \to X\) is nonexpansive and that \(\text{Fix} R \neq \emptyset\). Suppose further that \(x \in X\) and that \((\lambda_n)_{n \in \mathbb{N}}\) is a sequence in \([0, 1/2]\) such that \(\inf_{n \in \mathbb{N}} \lambda_n > 0\). Set \(y_0 = x\) and define \((y_n)_{n \in \mathbb{N}}\) by

\[
(\forall n \in \mathbb{N}) \quad y_{n+1} = Q(x, y_n, (1 - \lambda_n)y_n + \lambda_n R y_n).
\] \hspace{1cm} (19)

Then \((y_n)_{n \in \mathbb{N}}\) converges strongly to \(P_{\text{Fix} R} x\).

Proof. This follows from [2, Corollary 6.6(ii)]. ∎

We are now in a position to introduce HAAR and to establish its convergence properties.

Theorem 3.3 (HAAR) Suppose that \(x \in X\) and that \((\mu_n)_{n \in \mathbb{N}}\) is a sequence in \([0, 1]\) such that \(\inf_{n \in \mathbb{N}} \mu_n > 0\). Define the sequence \((y_n)_{n \in \mathbb{N}}\) generated by Haugazeau-like averaged alternating reflections by \(y_0 = x\) and

\[
(\forall n \in \mathbb{N}) \quad y_{n+1} = Q(x, y_n, (1 - \mu_n)y_n + \mu_n T y_n).
\] \hspace{1cm} (20)

Then \((y_n)_{n \in \mathbb{N}}\) converges strongly to \(P_{C + K} x\). Moreover, \((P_{B y_n})_{n \in \mathbb{N}}\) converges strongly to \(P_{C\times} x\).
Several comments on Theorem 3.3 are in order.

Remark 3.4

(i) While a detailed numerical study of HAAR lies outside the scope of this paper, we nonetheless briefly discuss a numerical example demonstrating the potential of HAAR. As in [4, Section 1] for AAR, we consider the case when \(X = \mathbb{R}^2 \), \(A = \{(\xi_1, \xi_2) \in X \mid \xi_2 \leq 0\} \), and \(B = \{(\xi_1, \xi_2) \in X \mid \xi_1 \leq \xi_2\} \). Let \(x = (8, 4) \) so that \(P_C x = (0, 0) \). Let \((y_n)_{n \in \mathbb{N}} \) be a sequence constructed as in Theorem 3.3 with \(\mu_n = 1 \). Then \(y_0 = x = (8, 4), y_1 = (6, -2) \), and \(y_n = (0, 0) \), for every \(n \in \{2, 3, \ldots\} \). Therefore, \(P_{BY_0} = (6, 6), P_{BY_1} = (2, 2) \), and \(P_{BY_n} = (0, 0) \), for every \(n \in \{2, 3, \ldots\} \). Thus HAAR converges to the solution \(P_C x = (0, 0) \) in just two steps. On the other hand, Dykstra’s algorithm, which is a popular best approximation method (see, e.g., [5, Chapter 9]), requires infinitely many steps in this setting.

(ii) It is important to monitor the sequence \((P_{BY_n})_{n \in \mathbb{N}} \) rather than \((y_n)_{n \in \mathbb{N}} \) in order to approximate \(P_C x \). Indeed, let \(A = B = \{0\} \) and \(x \in X \setminus \{0\} \). Then \(K = X \) and thus \((y_n)_{n \in \mathbb{N}} \) converges to \(P_{C+K} x = P_X x = x \) but not to \(P_C x = \{0\} \).

(iii) Theorem 3.3 can be utilized to handle best approximation problems with more than two sets. Suppose that \(C_1, \ldots, C_J \) are finitely many closed convex sets in \(X \) such that \[
C = C_1 \cap \cdots \cap C_J \neq \emptyset.
\] (21)

As in our corresponding discussion for AAR in [4, Section 4], we employ Pierra’s product space technique [9]. Let us take \((\omega_j)_{1 \leq j \leq J} \) in \([0, 1] \) such that \(\sum_{j=1}^{J} \omega_j = 1 \), and let us denote by \(X \) the Hilbert space \(X^J \) with the inner product \((x_{j1 \leq j \leq J}, y_{j1 \leq j \leq J}) \mapsto \sum_{j=1}^{J} \omega_j \langle x_j, y_j \rangle \). Set \[
A = \{(x, \ldots, x) \in X : x \in X\} \quad \text{and} \quad B = C_1 \times \cdots \times C_J,
\] (22)
and observe that the set \(C = \bigcap_{j=1}^{J} C_j \) in \(X \) corresponds to the set \(C = A \cap B \) in \(X \). The projections of \(x = (x_{j1 \leq j \leq J}) \in X \) onto \(A \) and \(B \) are given by

\[
P_A x = (\sum_{j=1}^{J} \omega_j x_j, \ldots, \sum_{j=1}^{J} \omega_j x_J) \quad \text{and} \quad P_B x = (P_{C_1} x_1, \ldots, P_{C_J} x_J),
\] (23)

respectively. Thus we have explicit formulae for \(R_A = 2P_A - I \) and \(R_B = 2P_B - I \), where \(I \) denotes the identity operator on \(X \). Let \[
T = \frac{1}{2}(R_A R_B + I),
\] (24)

let \(x \in X \), and set \(y_0 = (x, x, \ldots, x) \in X \). Define the sequence \((y_n)_{n \in \mathbb{N}} \) recursively by \[
y_{n+1} = Q(y_0, y, Ty_n),
\] (25)

6
where \(Q \) is defined on \(X^3 \) analogously to how \(Q \) is defined on \(X^3 \) in Definition 3.1. Then Theorem 3.3 (with \(\mu_n \equiv 1 \)) implies that \((PB_y^n)_{n\in\mathbb{N}}\) converges strongly \(P_{C}y_0 = (P_Cx, \ldots, P_Cx) \). Consequently, \((PA_PB_y^n)_{n\in\mathbb{N}}\) converges strongly to \(P_{C}y_0 \) as well. Since this last sequence lies in \(A \), we identify it with some sequence \((a_n)_{n\in\mathbb{N}}\) in \(X \) via \((PA_PB_y^n)_{n\in\mathbb{N}} = (a_n, \ldots, a_n)_{n\in\mathbb{N}}\). Altogether, the sequence \((a_n)_{n\in\mathbb{N}}\) converges strongly to \(P_{C}x \).

Acknowledgment

H. H. Bauschke’s work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

References

