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Abstract

Dykstra’s algorithm employs the projectors onto two closed convex sets in a Hilbert space to
construct iteratively the projector onto their intersection. In this paper, we use a duality argu-
ment to devise an extension of this algorithm for constructing the resolvent of the sum of two
maximal monotone operators from the individual resolvents. This result is sharpened to obtain
the construction of the proximity operator of the sum of two proper lower semicontinuous convex
functions.
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1 Introduction

Throughout this paper H is a real Hilbert space with scalar product 〈· | ·〉 and norm ‖ · ‖. The
projector onto a nonempty closed convex set U ⊂ H is denoted by PU , and → denotes strong
convergence.

A standard problem in applied mathematics is to find the projection of a point z ∈ H onto the
intersection of two nonempty closed convex subsets U and V of H. In the case when U and V
are vector subspaces, an algorithmic solution to this problem was found in 1933 by von Neumann
in the form of the classical alternating projection method (see [12] for historical background and
applications in various disciplines).
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†UPMC Université Paris 06, Laboratoire Jacques-Louis Lions – UMR 7598, 75005 Paris, France. E-mail:

plc@math.jussieu.fr.

1



Theorem 1.1 (von Neumann’s algorithm) [23] Let z ∈ H, let U and V be closed vector sub-

spaces of H, and set

x0 = z and (∀n ∈ N) yn = PV xn and xn+1 = PUyn. (1)

Then xn → PU∩V z and yn → PU∩V z.

Unfortunately, this result fails in two respects when U and V are general intersecting closed
convex sets: first, while weak convergence of the sequences (xn)n∈N and (yn)n∈N in (1) holds [8],
strong convergence can fail [16]; second, as simple examples show [9], the limit point need not be
the projection of z onto U ∩ V . In the case when U and V are closed convex cones in a Euclidean
space, a modification of the iteration (1), proposed by Dykstra in [14] in the form of (2) below,
provides convergence to PU∩V z. This result was then extended to closed convex sets as follows (for
further analysis on this theorem, see [5, 13, 15, 22]).

Theorem 1.2 (Dykstra’s algorithm) [7] Let z ∈ H, let U and V be closed convex subsets of H
such that U ∩ V 6= ∅, and set











x0 = z

p0 = 0

q0 = 0

and (∀n ∈ N)

{

yn = PV (xn + pn)

pn+1 = xn + pn − yn
and

{

xn+1 = PU (yn + qn)

qn+1 = yn + qn − xn+1.
(2)

Then xn → PU∩V z and yn → PU∩V z.

The objective of this paper is to propose a generalization of Theorem 1.2 for finding the resolvent
of the sum of two maximal monotone operators. This generalization is proposed in Section 2. In
the case of subdifferentials, our results are sharpened in Section 3, where we provide an algorithm
for finding the proximity operator of the sum of two proper lower semicontinuous convex functions.
This analysis captures in particular Theorem 1.2.

2 The resolvent of the sum of two monotone operators

We first recall some basic notation and definitions.

Notation 2.1 Let A : H → 2H be a set-valued operator. Then domA =
{

x ∈ H | Ax 6= ∅
}

is the
domain of A, ranA =

{

u ∈ H | (∃x ∈ H) u ∈ Ax
}

is its range, zerA =
{

x ∈ H | 0 ∈ Ax
}

is its
set of zeros, and graA =

{

(x, u) ∈ H ×H | u ∈ Ax
}

is its graph. The inverse of A is the operator
A−1 : H → 2H with graph

{

(u, x) ∈ H ×H | u ∈ Ax
}

and the resolvent of A is JA = (Id +A)−1.
We set

A∼ : H → 2H : x 7→ −A−1(−x). (3)

Now, suppose that A is monotone, i.e., for every (x, u) and (y, v) in graA,

〈x− y | u− v〉 ≥ 0. (4)
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Then JA : ran(Id+A) → H is single-valued. Moreover, A is declared maximal monotone when the
following property is satisfied for every (x, u) ∈ H × H: if (4) holds for every (y, v) ∈ graA, then
(x, u) ∈ graA. Minty’s theorem states that A is maximal monotone if and only if ran(Id +A) = H.
In this case, we have

JA−1 = Id−JA and (JA−1)∼ = Id+A∼. (5)

Finally, the strong relative interior of a convex subset C of H is

sriC =

{

x ∈ C

∣

∣

∣

∣

⋃

λ>0

λ(C − x) = span(C − x)

}

. (6)

For background on monotone operators, see [4] and [21].

Let C and D be maximal monotone operators from H to 2H. As discussed in [3], pairing the
inclusion 0 ∈ Cx + Dx with the dual inclusion 0 ∈ C−1u + D∼u brings useful insights into the
analysis of various problems in nonlinear analysis. This approach relies on the simple equivalence

zer(C +D) 6= ∅ ⇔ zer(C−1 +D∼) 6= ∅. (7)

In [6], this duality framework proved particularly useful in the investigation of the asymptotic
behavior of the composition of two resolvents. Some of these results will be instrumental in the
present paper.

Proposition 2.2 Let C and D be maximal monotone operators from H to 2H. Then zer(C +
Id−JD) 6= ∅ if and only if JC−1+D∼ 0 exists, in which case zer(C−1 + Id +D∼) =

{

JC−1+D∼ 0
}

.

Proof. By definition, JC−1+D∼ 0 is the unique solution to the inclusion 0 ∈ (Id +C−1 +D∼)u, i.e.,
the unique point in zer(C−1 + Id +D∼). On the other hand, we derive from (7) applied to the
maximal monotone operators C and JD−1 , and from (5) that

zer(C + Id−JD) 6= ∅ ⇔ zer(C−1 + (JD−1)∼) 6= ∅ ⇔ zer(C−1 + Id +D∼) 6= ∅. (8)

The proof is now complete.

Theorem 2.3 Let C and D be maximal monotone operators from H to 2H, and set

u0 ∈ H and (∀n ∈ N) vn = JDun and un+1 = JCvn. (9)

Then the following hold.

(i) Suppose that zer(C + Id−JD) 6= ∅. Then vn−un → JC−1+D∼ 0 and vn−un+1 → JC−1+D∼ 0.

(ii) Suppose that zer(C + Id−JD) = ∅. Then ‖un‖ → +∞ and ‖vn‖ → +∞.

Proof. (i): [6, Theorem 3.3]. (ii): [6, Theorem 3.5].

The main result of this section is the following theorem on the asymptotic behavior of the exten-
sion of (2) from projectors onto closed convex sets to resolvents of maximal monotone operators.
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Theorem 2.4 Let z ∈ H, let A and B be maximal monotone operators from H to 2H, and set











x0 = z

p0 = 0

q0 = 0

and (∀n ∈ N)

{

yn = JB(xn + pn)

pn+1 = xn + pn − yn
and

{

xn+1 = JA(yn + qn)

qn+1 = yn + qn − xn+1.
(10)

Then the following hold.

(i) Suppose that z ∈ ran(Id+A+B). Then xn → JA+B z and yn → JA+B z.

(ii) Suppose that z /∈ ran(Id+A+B). Then ‖pn‖ → +∞ and ‖qn‖ → +∞.

Proof. It follows from (10) that

(∀n ∈ N) pn+1 + qn + yn = xn + pn − yn + qn + yn = xn + pn + qn. (11)

On the other hand, (∀n ∈ N) pn+qn = z−xn. Indeed, in view of (10), this identity is certainly true
for n = 0 and, if pn+qn = z−xn for some n ∈ N, then pn+1 +qn+1 = xn+pn−yn+yn+qn−xn+1 =
z − xn+1. Altogether, we have

(∀n ∈ N) z = pn+1 + qn + yn = pn + qn + xn (12)

and we can therefore rewrite (10) as











x0 = z

p0 = 0

q0 = 0

and (∀n ∈ N)

{

yn = JB(z − qn)

pn+1 = z − qn − yn
and

{

xn+1 = JA(z − pn+1)

qn+1 = z − pn+1 − xn+1.
(13)

Now set
u0 = −z and (∀n ∈ N) un = qn − z and vn = −pn+1. (14)

We infer from (14) and (12) that

(∀n ∈ N) vn − un = −pn+1 − qn + z = yn and vn − un+1 = −pn+1 − qn+1 + z = xn+1. (15)

Furthermore, it follows from (14) and (13) that the sequences (un)n∈N and (vn)n∈N are coupled via
the equations

(∀n ∈ N) vn = −pn+1 = qn − z + yn = un + JB(−un)

and un+1 = qn+1 − z = −pn+1 − xn+1 = vn − JA(vn + z). (16)

Now define two maximal monotone operators by

C : H → 2H : v 7→ A−1(v + z) and D = B∼. (17)

It is easily seen that
C−1 = −z +A and D∼ = B. (18)
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Moreover, (5) yields

(∀u ∈ H)(∀v ∈ H) u = v − JA(v + z) ⇔ u+ z = v + z − JA(v + z) = JA−1(v + z)

⇔ v − u ∈ A−1(u+ z) = Cu

⇔ u = JCv (19)

and
(∀u ∈ H) u+ JB(−u) = −(−u− JB(−u)) = −JB−1(−u) = JDu. (20)

Thus, we can rewrite (16) as

(∀n ∈ N) vn = JDun and un+1 = JCvn, (21)

which is precisely the iteration described in (9) with initial point u0 = −z. On the other hand, it
follows from (18) that, for every x ∈ H,

x = JA+B z ⇔ 0 ∈ x+ (−z +Ax+Bx) ⇔ x = J(−z+A)+B 0 = JC−1+D∼ 0. (22)

Hence,

z ∈ ran(Id+A+B) ⇔ z ∈ dom(Id +A+B)−1

⇔ JA+B z exists

⇔ JC−1+D∼ 0 exists. (23)

Therefore, we deduce from Proposition 2.2 and Theorem 2.3 the following.

(i): If z ∈ ran(Id+A + B), then (15) yields yn = vn − un → JC−1+D∼ 0 = JA+B z and xn+1 =
vn − un+1 → JC−1+D∼ 0 = JA+B z.

(ii): If z /∈ ran(Id +A + B), then (14) yields ‖pn+1‖ = ‖vn‖ → +∞ and ‖qn‖ = ‖un + z‖ ≥
‖un‖ − ‖z‖ → +∞.

Remark 2.5 Suppose that in Theorem 2.4 we make the additional assumption that A+B is max-
imal monotone, as is true when 0 ∈ sri(domA− domB); see [2, Corollaire 1] or [21, Theorem 23.2].
Then item (ii) never occurs in Theorem 2.4 and therefore (∀z ∈ H) xn → JA+B z and yn → JA+B z.

3 The proximity operator of the sum of two convex functions

In this section, we turn our attention to the intermediate situation between (2) and (13) in which
proximity operators are used.

Notation 3.1 A function f : H → ]−∞,+∞] is proper if dom f =
{

x ∈ H | f(x) < +∞
}

6= ∅.
The class of proper lower semicontinuous convex functions from H to ]−∞,+∞] is denoted by
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Γ0(H). Now let f ∈ Γ0(H). The conjugate of f is the function f∗ ∈ Γ0(H) defined by f∗ : u 7→
supx∈H 〈x | u〉 − f(x), the subdifferential of f is the maximal monotone operator

∂f : H → 2H : x 7→
{

u ∈ H | (∀y ∈ H) 〈y − x | u〉 + f(x) ≤ f(y)
}

, (24)

the set of minimizers of f is argmin f = zer ∂f , the Moreau envelope of f is the continuous convex
function

env f : H → R : x 7→ inf
y∈H

f(y) +
1

2
‖x− y‖2, (25)

and the reflection of f is the function f∨ : x 7→ f(−x). For every x ∈ H, the function y 7→ f(y) +
‖x−y‖2/2 admits a unique minimizer, which is denoted by proxf x. Alternatively, proxf = J∂f . See
[19, 24] for background on convex analysis, and [11, 18, 20] for background on proximity operators.

We require an additional result from [6], which sharpens Theorem 2.3.

Theorem 3.2 Let ϕ and ψ be functions in Γ0(H) such that

inf (ϕ+ envψ)(H) > −∞, (26)

and set

u0 ∈ H and (∀n ∈ N) vn = proxψ un and un+1 = proxϕ vn. (27)

Then the following hold.

(i) The function ϕ∗ + ψ∗∨ + ‖ · ‖2/2 admits a unique minimizer w. Moreover, vn − un → w and

vn − un+1 → w.

(ii) Suppose that argminϕ+ envψ = ∅. Then ‖un‖ → +∞ and ‖vn‖ → +∞.

Proof. [6, Theorem 4.6].

Theorem 3.3 Let z ∈ H, let f and g be functions in Γ0(H) such that

dom f ∩ dom g 6= ∅, (28)

and set










x0 = z

p0 = 0

q0 = 0

and (∀n ∈ N)

{

yn = proxg(xn + pn)

pn+1 = xn + pn − yn
and

{

xn+1 = proxf (yn + qn)

qn+1 = yn + qn − xn+1.
(29)

Then the following hold.

(i) xn → proxf+g z and yn → proxf+g z.

(ii) Suppose that argmin f∗(· + z) + env g∗∨ = ∅. Then ‖pn‖ → +∞ and ‖qn‖ → +∞.
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Proof. Set A = ∂f and B = ∂g. Then JA = proxf , JB = proxg, and (29) is therefore a special case
of (10). Let us set, as in (14),

u0 = −z and (∀n ∈ N) un = qn − z and vn = −pn+1. (30)

Then we obtain, as in (15),

(∀n ∈ N) vn − un = yn and vn − un+1 = xn+1 (31)

and, as in (16),

(∀n ∈ N) vn = un + proxg(−un) and un+1 = vn − proxf (vn + z). (32)

Now define two functions in Γ0(H) by

ϕ : H → ]−∞,+∞] : v 7→ f∗(v + z) −
1

2
‖z‖2 and ψ = g∗∨. (33)

Then

ϕ∗ = f − 〈· | z〉 +
1

2
‖z‖2, ψ∗ = g∨, and (envψ)∗ = g∨ +

1

2
‖ · ‖2. (34)

Therefore

(∀x ∈ H) ϕ∗(x) + ψ∗∨(x) +
1

2
‖x‖2 = f(x) − 〈x | z〉 +

1

2
‖z‖2 + g(x) +

1

2
‖x‖2

= (f + g)(x) +
1

2
‖z − x‖2. (35)

Moreover, if we set C = ∂ϕ and D = ∂ψ, it results from (33) that

(∀v ∈ H) Cv = ∂f∗(v + z) = A−1(v + z) and Dv = −∂g∗(−v) = B∼v. (36)

Hence, (19) and (20) yield

(∀v ∈ H) proxϕ v = v − proxf (v + z) and proxψ v = v + proxg(−v), (37)

which shows that (32) reduces to the iterative scheme (27) initialized with u0 = −z. On the other
hand, (33) yields

ϕ+ envψ = f∗(· + z) −
1

2
‖z‖2 + env g∗∨. (38)

It therefore follows from (34) and Fenchel duality that

(28) ⇔ f + g ∈ Γ0(H)

⇒ proxf+g z exists

⇔ argmin f + g +
1

2
‖z − ·‖2 6= ∅

⇔ argmin f − 〈· | z〉 +
1

2
‖z‖2 + g +

1

2
‖ · ‖2 6= ∅

⇔ argminϕ∗ + (envψ)∗∨ 6= ∅

⇔ inf
(

ϕ+ envψ
)

(H) > −∞

⇔ (26). (39)

7



We are now in a position to draw the following conclusions.

(i): It view of (35), the minimizer of ϕ∗ + ψ∗∨ + ‖ · ‖2/2 is w = proxf+g z. Consequently,
Theorem 3.2(i) and (31) yield yn = vn − un → proxf+g z and xn+1 = vn − un+1 → proxf+g z.

(ii): It follows from (38) that argmin f∗(· + z) + env g∗∨ = ∅ ⇒ argminϕ + envψ = ∅. In
turn, it results from Theorem 3.2(ii) and (30) that ‖pn+1‖ = ‖vn‖ → +∞ and ‖qn‖ = ‖un + z‖ ≥
‖un‖ − ‖z‖ → +∞.

Remark 3.4 Theorem 3.3 is sharper than Theorem 2.4 applied to A = ∂f and B = ∂g. Indeed,
since ∂f + ∂g ⊂ ∂(f + g), we have, for every p ∈ H,

p = J∂f+∂gz ⇔ z − p ∈ ∂f(p) + ∂g(p) ⇒ z − p ∈ ∂(f + g)(p) ⇔ p = proxf+g z. (40)

As a result, via Theorem 2.4(i), we obtain

xn → proxf+g z and yn → proxf+g z (41)

provided that
z ∈ ran(Id+∂f + ∂g). (42)

A standard sufficient condition for this inclusion to hold for every z ∈ H is

0 ∈ sri(dom f − dom g), (43)

see [1] or [24, Theorem 2.8.7]. On the other hand, in Theorem 3.3(i), we obtain (41) for every z ∈ H
with merely (28), i.e.,

0 ∈ (dom f − dom g). (44)

Since (44) is less restrictive than (42), it is clear that Theorem 3.3 is sharper than Theorem 2.4 in
the present subdifferential operator setting.

Let us note that, under condition (43), an alternative method for computing p = proxf+g z for an
arbitrary z ∈ H is the Douglas-Rachford algorithm for computing a zero of the sum of two maximal
monotone operators [10, 17]. Indeed, it follows from (43) that p is characterized by the inclusion
0 ∈ ∂(f + g)(p) = ∂f(p) + ∂g(p) + p − z = Cp + Dp, where C = −z + ∂f and D = Id+∂g are
maximal monotone.

Remark 3.5 Let f and g be the indicator functions of closed convex subsets U and V of H,
respectively. Then Theorem 3.3(i) reduces to Theorem 1.2. If we further assume that U and V
are closed vector subspaces, then we obtain Theorem 1.1 since in this case (2) yields (∀n ∈ N)
yn = PV (xn + pn) = PV xn + PV pn = PV xn and xn+1 = PU (yn + qn) = PUyn + PUqn = PUyn.
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[24] C. Zălinescu, Convex Analysis in General Vector Spaces. World Scientific, River Edge, NJ,
2002.

10


