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Abstract

In their recent SIAM |. Control Optim. paper from 2009, ]. Eckstein and B.F. Svaiter proposed
a very general and flexible splitting framework for finding a zero of the sum of finitely many
maximal monotone operators. In this short note, we provide a technical result that allows for
the removal of Eckstein and Svaiter’s assumption that the sum of the operators be maximal
monotone or that the underlying Hilbert space be finite-dimensional.
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Throughout, we assume that H is a real Hilbert space with inner product (-, -) and induced norm
|| - |- We shall assume basic notation and results from Fixed Point Theory and from Monotone
Operator Theory; see, e.g., [1, 8, 9, 11, 12, 13, 14]. The graph of a maximal monotone operator
A: 'H = H is denoted by gra A, and its resolvent (A + 1d) ! by J4. Weak convergence is indicated
by —.

Lemma 1 Let C be a closed linear subspace of H and let F: H — H be firmly nonexpansive. Then
PcF + (Id —Pc) (Id —F) is firmly nonexpansive.

Proof. Since Pc and F are firmly nonexpansive, we have that 2Pc — Id and 2F — Id are both nonex-
pansive. Set T = PcF + (Id —Pc)(Id —F). Then 2T —Id = (2Pc —Id)(2F — Id) is nonexpansive,
and hence T is firmly nonexpansive. [
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Theorem 2 Let A: ' H = 'H be maximal monotone, and let C be a closed linear subspace of H. Let
(xXn, Un)neN be a sequence in gra A such that (x,,u,) — (x,u) € H x H. Suppose that x,, — Pcx, — 0
and that Pcu, — 0, where Pc denotes the projector onto C. Then (x,u) € (graA) N (C x Ct) and
(X, tty) — (x,u) = 0.

Proof. Since Pc is a bounded linear operator, it is weakly continuous ([3, Theorem VI.1.1]). Thus
x < x, = (x4, — Pcxy) + Pcxy, — 04 Pex and hence x = Pcx € C. Similarly, 0 < Pcu, — Pcu;
hence Pcu = 0 and so u € C*. Altogether,

(1) (x,u) € Cx C*L.

Since Id —J 4 is firmly nonexpansive, we see from Lemma 1 that

2) T = Pe(ld—]a) + (Id —Pc)Ja = Pc + (Id —2Pc)]4

is also firmly nonexpansive. Now (Vn € IN) u,, € Ax,, ie.,

(3) (Vn € N)  x, = Ja(xy + uy).
Furthermore,
4) Xy +u, — x+u,

and (2) and (3) imply that T(x, + u,) = Pc(xy + un) + (Id —2Pc)Ja (x4 + 1) = Pcxy + Pouy, +
(Id —2P¢)x,, = xyy — Pcxy, + Pcuy, — 0, i.e., that

5) T(xy + uy) — 0.

Since Id —T is (firmly) nonexpansive, the demiclosedness principle (see [8, 9]), applied to the
sequence (x, + ) nen and the operator Id —T, and (4) and (5) imply that (Id —(Id —T))(x+u) =
0,1i.e., that T(x + u) = 0. Using (2), this means that

(6) Ja(x +u) =2PcJa(x+u) — Pc(x+u) € C.

Applying Pc to both sides of (6), we deduce that Ja(x + u) = PcJa(x + u); consequently, (6)
simplifies to

7) Ja(x +u) = Pcx + Peu.

However, (1) yields Pcx = x and Pcu = 0, hence (7) becomes J4(x + 1) = x; equivalently, u € Ax
or

(8) (x,u) € gra A.

Combining (1) and (8), we see that (x,u) € (graA) N (C x C*), as claimed. Finally, (x,, u,) =
(Pcxy, Pcuty) 4+ (Peixy, Portty) — (Pex,0) + (0, Peru) = 0 = (Pex, Peou) = (x, u). [



Corollary 3 Let Ay,..., A be maximal monotone operators 'H, and let zy,...,zy and wy, ..., Wy be
vectors in ‘H. Suppose that for each i, (X, Yin)neN is a sequence in gra A; such that for all i and j,

(9) (xi,n/ yi,n) - (Zi/ wi)
m
(10) > Yin—0
i=1
(11) Xin — x]‘,n — 0.
Thenzy = -+ =z, w1+ -+ w, =0,and each w; € A;z;.

Proof. We work in product Hilbert space H = H™, and we set
(12) A=A x---xAy and C={(x1,...,xp) eH |x1 =" = xp}.

Note that A is maximal monotone on ‘H, and that C is a closed linear subspace of H. Next, set
X=(z1,...,2m), 0 = (W1,...,Wy),and (Vn € N) x, = (X1, .-, Xmn) and uy = (Y1, -+, Yimn)-
By (9), (Xn, un)neN is a sequence in gra A such that (x,,u,) — (x,u). Furthermore, (10) and (11)
imply that Pcu, — 0 and that x, — Pcx, — 0, respectively. Therefore, by Theorem 2, (x,u) €
(graA) N (C x C1), which is precisely the announced conclusion. [

Remark 4 Corollary 3 is a considerable strengthening of [7, Proposition A.1], where it was ad-
ditionally assumed that Ay + --- + A,, is maximal monotone, and where part of the conclusion of
Corollary 3, namely z; = - - - = z,,, was an additional assumption.

Remark 5 Because of the removal of the assumption that A; + - - - + A, be maximal monotone
(see the previous remark), a second look at the proofs in Eckstein and Svaiter’s paper [7] reveals
that — in our present notation — the assumption that

“either H is finite-dimensional or A; + - - - + A, is maximal monotone”

is superfluous in both [7, Proposition 3.2 and Proposition 4.2]. This is important in the infinite-
dimensional case, where the maximality of the sum can typically be only guaranteed when a con-
straint qualification is satisfied; consequently, Corollary 3 helps to widen the scope of the powerful
algorithmic framework of Eckstein and Svaiter.

Remark 6 The author is grateful for the following comments.

(i) Dr. Patrick Combettes brought to our attention the recent paper [2] on the use of product
space techniques in monotone operator splitting problems.

(ii) Dr. Jonathan Eckstein observed that Lemma 1 remains true if P¢ is replaced by an arbitrary
linear firmly nonexpansive operator and that the operator PcF + (Id —P¢)(Id —F) = (2P¢ —
Id)(2F — 1d) lies at the heart of splitting methods including the Douglas-Rachford splitting
method [4, 5, 6, 10].
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