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Abstract

The Method of Alternating Projections (MAP), a classical algorithm for solving feasibility prob-
lems, has recently been intensely studied for nonconvex sets. However, intrinsically available
are only local convergence results: convergence occurs if the starting point is not too far away
from solutions to avoid getting trapped in certain regions. Instead of taking full projection
steps, it can be advantageous to underrelax, i.e., to move only part way towards the constraint
set, in order to enlarge the regions of convergence.

In this paper, we thus systematically study the Method of Alternating Relaxed Projections
(MARP) for two (possibly nonconvex) sets. Complementing our recent work on MAP, we es-
tablish local linear convergence results for the MARP. Several examples illustrate our analysis.
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1 Introduction

We assume throughout this paper that

(1) X is a Euclidean space
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with inner product 〈·, ·〉 and associated norm ‖ · ‖ and that

(2) A and B are nonempty closed subsets of X.

Our aim is to solve the feasibility problem

(3) find x ∈ A ∩ B.

(We do not a priori assume that A∩ B 6= ∅.) We assume that it is possible to evaluate the projection
operators (nearest point mappings) PA and PB associated with the constraints sets A and B respec-
tively. The operators PA and PB are generally set-valued; they are single-valued only in the convex
case. The celebrated Method of Alternating Projections (MAP), whose origins can be traced back to
von Neumann [28] and Wiener [30], with starting point b−1 ∈ X generates sequences according to
the update rule1

(4) (∀n ∈ N) an ∈ PAbn−1 and bn ∈ PBan.

If A and B are convex, then this method is well understood; see, e.g., [2, 5, 7, 11, 12, 13, 16, 17, 18, 19]
and the references therein for extensions and variants. The convergence theory for the MAP and
related methods is much more delicate in the absence of convexity; see, e.g., [8, 9, 15, 23, 24] and
the references therein.

Simple examples can be constructed to show that in general one cannot expect global conver-
gence of the MAP when A ∩ B 6= ∅:

Example 1.1 (unrelaxed MAP) Suppose that X = R, that A = {−3, 2} and that B = {−3, 6}.
Then A ∩ B = {−3} 6= ∅. Now set b−1 := 0. Then a0 := PAb−1 = PA0 = 2 (since |2− 0| =
2 < 3 = | − 3− 0|) and b0 := PBa0 = PB2 = 6 (since |6− 2| = 4 < 5 = | − 3− 2|) and clearly
a1 := PAb0 = 2. It follows that

(5) (∀n ∈ N) an = 2 and bn = 6.

Thus, the sequences generated by the MAP do not converge to a point in A ∩ B (see Figure 1).

To improve this situation, we study in this paper the Method of Alternating Relaxed Projections,
where the unrelaxed projection steps are replaced by underrelaxed versions; e.g., the projection
operators PA and PB may be replaced by (1 − λ) Id+λPA and (1 − µ) Id+µPB, where λ and µ

belong to ]0, 1]. In the convex case, there are several pertinent references including [2, 3, 11, 14, 20,
21, 22, 29].

The idea of regularizing operators is of course not new; MARP can be seen as regularizing the
straight projection operators. To demonstrate the potential of this approach, let us revisit Exam-
ple 1.1:

Example 1.2 (MARP for Example 1.1) Let X, A, B, and b−1 be as in Example 1.1. Rather than
iterating PA and PB, we now iterate 1

2 Id+ 1
2 PA and 1

2 Id+ 1
2 PB. Then a0 = ( 1

2 Id+ 1
2 PA)b−1 =

1
2 b−1 +

1
2 PAb−1 = 1

2 0 + 1
2 2 = 1, b0 = ( 1

2 Id+ 1
2 PB)a0 = 1

2 1 + 1
2 (−3) = −2, a1 = ( 1

2 Id+ 1
2 PA)b0 =

1
2 (−2) + 1

2 (−3) = −5/2, b1 = · · · = −11/4, a2 = −23/8, b2 = −47/16, . . . (see Figure 1), and the
sequences generated converge2 to −3, the unique point in A ∩ B, as desired.
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Figure 1: MAP vs MARP

The goal of this paper is to systematically study the MARP and to provide sufficient conditions for
convergence.

The tools used are from variational analysis; we extend techniques recently introduced in [8, 9].

Our main results are the following:

• Theorem 4.3 is a powerful abstract linear convergence result that is applicable in particular
to the MARP;

• Theorem 5.11 provides a local linear convergence result for the MARP in the presence of a
CQ condition;

• Theorem 6.4 guarantees local linear convergence of the MARP under some regularity as-
sumptions.

The paper is organized as follows: After reviewing auxiliary notions in Section 2, we introduce
the MARP in Section 3 and obtain some basic properties. Abstract linear convergence results are
presented in Section 4. Local linear convergence results based on CQ conditions and on regularity
are provided in Sections 5 and 6, respectively. In Section 7, we discuss linearly vanishing relaxation
parameters. Various examples illustrating the general theory are constructed in Sections 8 and 9.

We conclude this section with some notational comments. We write R+ =
{

x ∈ R
∣∣ x ≥ 0

}
,

Z = {0,±1,±2, . . .}, and N = Z ∩ R+. The distance function is dA : x 7→ infa∈A ‖x − a‖ and
the (generally set-valued) projection operator is PA : x 7→

{
a ∈ A

∣∣ ‖x− a‖ = dA(x)
}

. Given a

subset S of X, we write int S, ri S, and S for the interior, the relative interior and the closure
of S, respectively. If u and v are points in X, we write [u, v] =

{
(1− λ)u + λv

∣∣ 0 ≤ λ ≤ 1
}

,

]u, v] =
{
(1− λ)u + λv

∣∣ 0 < λ ≤ 1
}

, and similarly for [u, v[ and ]u, v[. We also set ball(u; r) ={
x ∈ X

∣∣ ‖x− u‖ ≤ r
}

. For notation not explicitly stated in this paper, and background material
in convex and variational analysis, we refer the reader to [7, 10, 25, 26, 27, 31].

2 Auxiliary Notions

In this section, we collect several technical definitions for future use. For further results and com-
ments, see [8, 9] and the references therein. We start with the restricted normal cone, which is not

1We follow a common but convenient abuse of notation and write an = PAbn−1 etc. if the set of nearest points is a
singleton.

2This will follow from Example 8.2 below.
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only central to our analysis but also a generalized version of the Mordukhovich normal cone, an
object known to be of critical importance in modern variational analysis.

Definition 2.1 (restricted normal cones) (See [8, Definition 2.1].) Let a ∈ A.

(i) The B-restricted proximal normal cone of A at a is

(6) N̂B
A(a) := cone

((
B ∩ P−1

A a
)
− a

)
= cone

((
B− a

)
∩
(

P−1
A a− a

))
.

(ii) The B-restricted normal cone NB
A(a) is implicitly defined by u ∈ NB

A(a) if and only if there exist

sequences (an)n∈N in A and (un)n∈N in N̂B
A(an) such that an → a and un → u.

Definition 2.2 (regularity of sets) (See [8, Definition 8.1].) Let c ∈ B, ε ≥ 0, and δ > 0. Then B is
(A, ε, δ)-regular at c if

(7)

(y, b) ∈ B× B,
‖y− c‖ ≤ δ, ‖b− c‖ ≤ δ,

u ∈ N̂A
B (b)



 ⇒ 〈u, y− b〉 ≤ ε‖u‖ · ‖y− b‖.

The set B is called A-superregular at c ∈ B if for every ε > 0 there exists δ > 0 such that B is (A, ε, δ)-
regular at c. When A = X, we say “B is (ε, δ)-regular” or “B is superregular”, i.e., the prefix “X-” is
omitted.

Definition 2.3 (linear convergence) Let (xn)n∈N be a sequence in X, let c ∈ X, let α ∈ ]0, 1[. Then
(xn)n∈N converges to c linearly with rate α if there exists M ∈ R+ such that3

(8) (∀n ∈ N) ‖xn − c‖ ≤ Mαn.

Definition 2.4 (CQ-number) (See [8, Definition 6.1].) Let Ã and B̃ be nonempty subsets of X, let
c ∈ X, and let δ ∈ R++. The CQ-number at c associated with (A, Ã, B, B̃) and δ is

(9) θδ := θδ

(
A, Ã, B, B̃

)
:= sup

{
〈u, v〉

∣∣∣∣
u ∈ N̂B̃

A(a), v ∈ −N̂ Ã
B (b), ‖u‖ ≤ 1, ‖v‖ ≤ 1,

‖a− c‖ ≤ δ, ‖b− c‖ ≤ δ.

}
,

and the limiting CQ-number at c associated with (A, Ã, B, B̃) is

(10) θ := θ
(

A, Ã, B, B̃
)

:= lim
δ↓0

θδ

(
A, Ã, B, B̃

)
.

Definition 2.5 (CQ condition) (See [8, Definition 6.6].) Let Ã and B̃ be nonempty subsets of X, and
let c ∈ X. Then the (A, Ã, B, B̃)-CQ condition holds at c if

(11) NB̃
A(c) ∩

(
− N Ã

B (c)
)
⊆ {0}.

We recall the following equivalence from [8, Theorem 6.8]:

(12) NB̃
A(c) ∩

(
− N Ã

B (c)
)
⊆ {0} ⇔ θ(A, Ã, B, B̃) < 1.

3Note that one may alternatively require that (8) only holds eventually at the expense of possibly enlarging M; see,
e.g., [9, Remark 3.7].
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3 MARP: Basic Properties

Definition 3.1 Let y ∈ X and let λ ∈ ]0, 1]. Then the vectors in the set

(13) (1− λ)y + λPAy =
{
(1− λ)y + λa

∣∣ a ∈ PAy
}

are called λ-relaxed projections of y on A.

Note that the 1-relaxed projections are precisely the original (unrelaxed) projections. From now
on, we assume that

(14) λ = (λn)n∈N and µ = (µn)n∈N are sequences in ]0, 1], and α0 := max{λ0, µ0}.

Definition 3.2 (Method of Alternating Relaxed Projections (MARP)) Let y−1 ∈ X be the starting
point. The method of alternating (λ, µ)-relaxed projections between A and B (the (λ, µ)-MARP or just
MARP in short) generates sequences x := (xn)n∈N and y := (yn)n∈N as follows:

(15)
(∀n ∈ N) yn−1 7→ an ∈ PAyn−1 7→ xn := (1− λn)yn−1 + λnan

7→ bn ∈ PBxn 7→ yn := (1− µn)xn + µnbn 7→ · · · .

We call (x, y) also (λ, µ)-MARP or simply MARP sequences.

If (∀n ∈ N) λn = µn = 1, then (xn)n∈N = (an)n∈N and (yn)n∈N = (bn)n∈N, and the MARP
reduces to the classic method of alternating projections (MAP).

Unless specified otherwise, we assume for the remainder of this paper that

(16)
(
x = (xn)n∈N, y = (yn)n∈N

)
are (λ, µ)-MARP sequences with starting point y−1.

The following simple result turns out to be quite useful.

Proposition 3.3 Let y ∈ X, a ∈ PAy, λ ∈ ]0, 1], and set x := (1− λ)y + λa. Then the following hold:

(i) PA(x) = a.

(ii) x− y = λ(a− y) and thus ‖x− y‖ = λ‖a− y‖ = λdA(y).

(iii) λ(x− a) = (1− λ)(y− x).

Proof. (i): Suppose that a′ ∈ A r {a}. Case 1: x ∈ [y, a′]. Then ‖y− a′‖ > ‖y− a‖ because y, a, a′ lie
on the same ray. So

(17) ‖x− a′‖ = ‖y− a′‖ − ‖y− x‖ > ‖y− a‖ − ‖y− x‖ = ‖x− a‖.

Case 2: x /∈ [y, a′]. Then

(18) ‖x− a′‖ > ‖y− a′‖ − ‖y− x‖ ≥ ‖y− a‖ − ‖y− x‖ = ‖x− a‖.
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In either case, ‖x− a′‖ > ‖x− a‖ and therefore a = PA(x).

(ii): Indeed, x− y = λ(a− y)⇔ x = (1− λ)y + λa.

(iii): We have: λ(x − a) = (1− λ)(y− x) ⇔ λ(x − a) = (1− λ)y− (1− λ)x ⇔ −λa = (1−
λ)y− x⇔ x = (1− λ)y + λa. �

Definition 3.4 (projection absorbing) Let S be a nonempty subset of X. Then S is A-projection ab-
sorbing (or projection absorbing with respect to A), if

(19) (∀s ∈ S)(∀a ∈ PAs) [s, a] ⊆ S.

Remark 3.5 Let S be a subset of X that is A-projection absorbing.

(i) Clearly, X is A-projection absorbing.

(ii) If S is B-projection absorbing, then S is also A ∪ B-projection absorbing because (∀s ∈ S)
PA∪B(s) ⊆ PAs ∪ PBs. The opposite implication is not necessarily true: for example, if X =
R

2, S = A = R × {1}, and B = R × {0}, then S is A ∪ B-projection absorbing but not
B-projection absorbing.

(iii) If S is convex and PA(S) ⊆ S, then S is A-projection absorbing.

(iv) On the other hand, if A is convex and S = X r A, then S is (usually not convex but) still
A-projection absorbing.

The notion of a projection absorbing set is important because of the following result pertaining
to the orbit of the MARP.

Proposition 3.6 Let S be a subset of X that is both A-projection absorbing and B-projection absorbing. If
y−1 ∈ S, then (xn)n∈N and (yn)n∈N lie in S.

Proof. This follows readily by using mathematical induction. �

Lemma 3.7 Set β := max{dA(y−1), dB(y−1)}. Then the following hold:

‖x0 − y−1‖ = λ0dA(y−1) ≤ λ0β,(20a)

max{dA(x0), dB(x0)} ≤ ‖x0 − y−1‖+ β ≤ (1 + λ0)β,(20b)

‖y0 − x0‖ = µ0dB(x0) ≤ µ0(1 + λ0)β,(20c)

max{‖y0 − x0‖, ‖x0 − y−1‖} ≤ α0(1 + α0)β.(20d)

Proof. Using Proposition 3.3(ii), we have ‖x0 − y−1‖ = λ0dA(y−1) ≤ λ0β. Thus, (20a) holds. The
nonexpansiveness of distance functions implies (20b). On the one hand, using Proposition 3.3(ii)
again, we see that ‖y0 − x0‖ = µ0dB(x0). On the other hand, (20b) yields dB(x0) ≤ (1 + λ0)β.
Altogether, we obtain (20c). Finally, (20d) follows from (20a) and (20c). �

The following lemma is important for our analysis.

Lemma 3.8 Let n ∈ N and let θ ∈ [0, 1] be such that

(21) 〈yn − xn, yn−1 − xn〉 ≤ θ‖yn − xn‖ · ‖xn − yn−1‖.
Then

(22) ‖xn+1 − yn‖ ≤ λn+1

λn

√
λ2

n + (1− λn)2 + 2θλn(1− λn) ·max
{
‖yn − xn‖, ‖xn − yn−1‖

}
.
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Proof. Proposition 3.3(iii) yields

(23) xn − an = 1−λn
λn

(yn−1 − xn).

Combining (23) with assumption (21), we have

(24) 〈yn − xn, xn − an〉 = 1−λn
λn
〈yn − xn, yn−1 − xn〉 ≤ θ(1−λn)

λn
‖yn − xn‖ · ‖xn − yn−1‖.

Substituting (23) and (24) into

(25) ‖yn − an‖2 = ‖yn − xn‖2 + ‖xn − an‖2 + 2 〈yn − xn, xn − an〉

gives

(26) ‖yn − an‖2 ≤ ‖yn − xn‖2 + (1−λn)2

λ2
n
‖xn − yn−1‖2 + 2 θ(1−λn)

λn
‖yn − xn‖ · ‖xn − yn−1‖.

Multiplying both sides by λ2
n+1, we have

(27) λ2
n+1‖yn − an‖2 ≤ λ2

n+1

λ2
n

(
λ2

n + (1− λn)
2 + 2θλn(1− λn)

)
max2

{
‖yn − xn‖, ‖xn − yn−1‖

}
.

From Proposition 3.3(ii), we have

(28) ‖xn+1 − yn‖ = λn+1dA(yn)‖ ≤ λn+1‖yn − an‖.

Combining with (27), we obtain the result. �

A proof analogous to that of Lemma 3.8 (or interchanging the roles of A and B) yields the
following result.

Lemma 3.9 Let n ∈ N and let θ ∈ [0, 1] be such that

(29) 〈xn+1 − yn, xn − yn〉 ≤ θ‖xn+1 − yn‖ · ‖yn − xn‖.

Then

(30) ‖yn+1 − xn+1‖ ≤ µn+1

µn

√
µ2

n + (1− µn)2 + 2θµn(1− µn) ·max
{
‖xn+1 − yn‖, ‖yn − xn‖

}
.

4 Abstract Linear Convergence

In this section, we provide convergence results that refine and complement those of [9, Proposi-
tion 3.8] and [23]4.

Lemma 4.1 (abstract linear convergence) Let (xn)n∈N and (yn)n≥−1 be sequences in X. Assume that
there exist constants M ∈ R+ and ρ ∈ [0, 1[ such that

(31) (∀n ∈ N) max
{

d(yn, xn), d(xn, yn−1)
}
≤ Mρn.

Then there exists c̄ ∈ X such that

(32) (∀n ∈ N) max
{

d(xn, c̄), d(yn, c̄)
}
≤ M(1 + ρ)

1− ρ
· ρn;

consequently, (xn)n∈N and (yn)n∈N converge linearly to c̄ with rate ρ.

4In fact, the results in this section hold true in any complete metric space.
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Proof. We have

(33) (∀n ∈ N) d(yn, yn−1) ≤ d(yn, xn) + d(xn, yn−1) ≤ 2ρn M.

Hence, for every k ∈ {n + 1, n + 2, . . .},

(34) d(yk, yn) ≤
k

∑
i=n+1

d(yi, yi−1) ≤ 2M
k

∑
i=n+1

ρi ≤ 2Mρn+1

1− ρ
.

Thus (yn)n∈N is a Cauchy sequence with, say, limit c̄ ∈ X. Letting k→ +∞ in (34), we see that

(35) d(yn, c̄) ≤ 2Mρn+1

1− ρ
.

It also follows that

(36) d(xn, c̄) ≤ d(xn, yn) + d(yn, c̄) ≤ Mρn +
2Mρn+1

1− ρ
=

M(1 + ρ)ρn

1− ρ
.

Therefore, (36) implies that

(37) (∀n ∈ N) max
{

d(xn, c̄), d(yn, c̄)
}
≤ M(1 + ρ)

1− ρ
· ρn,

as claimed. �

Definition 4.2 (alternating contraction property) Let (xn)n∈N and (yn)n≥−1 be sequences in X, let
c ∈ X, and let (r, ρ) ∈ R++ × [0, 1[. We say that (xn)n∈N and (yn)n≥−1 have the alternating con-
traction property at c with parameters (r, ρ) if the following implication holds whenever n ∈ N and
(u1, u2, u3, u4) ∈ {(yn−1, xn, yn, xn+1), (xn, yn, xn+1, yn+1)}:

(38) max
{

d(u2, c), d(u3, c)
}
≤ r ⇒ d(u3, u4) ≤ ρ max

{
d(u1, u2), d(u2, u3)

}
.

Theorem 4.3 (abstract linear convergence) Let (xn)n∈N and (yn)n≥−1 be sequences in X, and let
(r, ρ) ∈ R++ × [0, 1[. Assume that the sequences (xn)n∈N and (yn)n≥−1 have the alternating contraction
property at y−1 with parameters (r, ρ). Assume further that

(39) M := max
{

d(y0, x0), d(x0, y−1)
}
≤ r(1−ρ)

2 .

Then (xn)n∈N and (yn)n∈N converge linearly to a point c̄ ∈ X with rate ρ; more precisely,

(40) (∀n ∈ N) max
{

d(xn, c̄), d(yn, c̄)
}
≤ M(1+ρ)

1−ρ ρn ≤ r(1+ρ)
2 ρn.

In addition, (xn)n∈N and (yn)n∈N, and hence c̄, all lie in ball(y−1; r).

Proof. Using (39), we estimate

(41) (∀n ∈ N) 2M
n

∑
i=0

ρi ≤ 2M

1− ρ
≤ r.

We now show by induction that the following holds for every n ∈ N:

d(xn, y−1) ≤
( n

∑
i=0

ρi +
n−1

∑
i=0

ρi
)

M,(42a)
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max
{

d(yn, xn), d(xn, yn−1)
}
≤ ρn M.(42b)

Clearly, in view of the definition of M, (42) holds when n = 0.

Now assume that (42) holds for some n ∈ N. First, using (41) and (42), we have

(43) d(xn, y−1) ≤ r and d(yn, y−1) ≤ d(yn, xn) + d(xn, y−1) ≤ r.

So the contraction property applied to the quadruple (yn−1, xn, yn, xn+1) implies

(44) d(xn+1, yn) ≤ ρ max{d(yn, xn), d(xn, yn−1)} ≤ ρn+1M.

It follows that

d(xn+1, y−1) ≤ d(xn+1, yn) + d(yn, xn) + d(xn, y−1)(45a)

≤ ρn+1M + ρn M +
( n

∑
i=0

ρi +
n−1

∑
i=0

ρi
)

M(45b)

=
( n+1

∑
i=0

ρi +
n

∑
i=0

ρi
)

M(45c)

≤ r.(45d)

So (42a) holds with n replaced by n + 1. Next, the contraction property applied to the quadruple
(xn, yn, xn+1, yn+1) yields

(46) d(yn+1, xn+1) ≤ ρ max
{

d(xn+1, yn), d(yn, xn)
}

.

In view of (46), (44), and (42b), we deduce that

(47) max
{

d(yn+1, xn+1), d(xn+1, yn)
}
≤ ρn+1M,

i.e., (42b) holds with n replaced by n + 1. Thus, by induction, (42) holds for every n ∈ N.

Combining (42b), Lemma 4.1, and (41), we obtain

(48) (∀n ∈ N) max{d(xn, c̄), d(yn, c̄)} ≤ M(1 + ρ)

1− ρ
ρn ≤ r(1 + ρ)

2
ρn.

Finally, (43) implies that the sequences (xn)n∈N and (yn)n∈N, and consequently their common
limit c̄, lie in ball(y−1; r). �

5 Linear Convergence of the MARP and the CQ Condition

The sequences (xn)n∈N and (yn)n∈N produced by the MARP need not lie in the sets A and B,
respectively. Therefore, the techniques utilized for the method of alternating projections in [8, 9]
and [23] cannot be directly applied. In this section, we present a new technique which relies on
the geometry of Euclidean spaces.

In addition to our assumptions on the sets A and B, the relaxation parameter sequences λ =
(λn)n∈N and µ = (µn)n∈N, and the MARP sequences x = (xn)n∈N and y = (yn)n∈N with starting
point y−1 ∈ X (see (2), (14), and (16)), we assume the following in this section:

(49a) S is a subset of X that is projection absorbing with respect to A and B, y−1 ∈ S,

9



and

(49b) (∀n ∈ N) λn ≥ λn+1 → λ∞ and µn ≥ µn+1 → µ∞, and α∞ := min{λ∞, µ∞}.

We start with a technical result.

Lemma 5.1 Let µ ∈ ]0, 1] and let θ ∈ [0, 1[. Then

(50) 0 < µ2 + (1− µ)2 + 2θµ(1− µ) = 1− 2(1− θ)µ(1− µ) ≤ 1,

and the last inequality is an equality if and only if µ = 1.

Proof. Clearly,

0 ≤ 2(1 + θ)µ(1− µ) = 2µ(1− µ) + 2θµ(1− µ)(51a)

≤ µ2 + (1− µ)2 + 2θµ(1− µ)(51b)

= µ2 + (1− µ)2 + 2µ(1− µ)− 2(1− θ)µ(1− µ)(51c)

= (µ + (1− µ))2 − 2(1− θ)µ(1− µ)(51d)

= 1− 2(1− θ)µ(1− µ) ≤ 1.(51e)

Note that equality in (51a) occurs exactly when µ = 1; in this case, the inequality (51b) is strict.
Furthermore, equality in (51e) occurs exactly when µ = 1. �

The following result will help us later in this section to identify the convergence rate of the
MARP.

Lemma 5.2 Let θ ∈ [0, 1[ and define ρ̂ ∈ R+ implicitly by

(52) ρ̂2 := sup
n∈N





λ2
n+1

λ2
n

(
λ2

n + (1− λn)
2 + 2θλn(1− λn)

)
,

µ2
n+1

µ2
n

(
µ2

n + (1− µn)
2 + 2θµn(1− µn)

)





.

Then 0 < ρ̂ ≤
√

1− 2(1− θ)min
{

α0(1− α0), α∞(1− α∞)
}
≤ 1; consequently, if 1 > α0 ≥ α∞ > 0,

then ρ̂ < 1.

Proof. Let us first consider

(53) σ := sup
n∈N

µ2
n+1

µ2
n

(
µ2

n + (1− µn)
2 + 2θµn(1− µn)

)
,

the corresponding supremum involving λ is treated similarly. Lemma 5.1 yields σ > 0. Since

(∀n ∈ N) 0 <
µ∞

µ0
≤ µn+1

µn
≤ 1 and hence

µ2
n+1

µ2
n
≤ 1, we estimate with the help of Lemma 5.1 that

0 < σ ≤ sup
n∈N

(
µ2

n + (1− µn)
2 + 2θµn(1− µn)

)
(54a)

= sup
n∈N

(
1− 2(1− θ)µn(1− µn)

)
(54b)

10



= 1− 2(1− θ)min
{

µ0(1− µ0), µ∞(1− µ∞)
}

(54c)

because any minimizer of the function µ 7→ µ(1− µ) restricted to the interval [µ∞, µ0] must be one
of the endpoints of the interval. The conclusion now follows by combining this estimate with its
λ counterpart. �

The following result provides information about the location of limits of the MARP.

Proposition 5.3 Suppose both sequences (xn)n∈N and (yn)n∈N generated by the MARP converge to c̄ ∈
X. Then the following hold:

(i) If λ∞ > 0, then c̄ ∈ A.

(ii) If µ∞ > 0, then c̄ ∈ B.

(iii) If α∞ > 0, then c̄ ∈ A ∩ B.

Proof. Clearly, xn − yn → 0 and yn − xn+1 → 0.

(i): Suppose that λ∞ > 0. By Proposition 3.3(ii), 0← ‖xn+1 − yn‖ = λn+1dA(yn). Since λ∞ > 0,
it follows that dA(yn)→ 0. Hence, c̄ ∈ A.

(ii): The proof is analogous to that of (i).

(iii): Combine (i) and (ii). �

The following examples illustrate that no conclusion can be drawn about the location of the
limit point when λ∞ = 0 or µ∞ = 0.

Example 5.4 (MARP limit point lies outside A ∪ B and λ∞ = µ∞ = 0) Suppose that X = S = R,
that A = B = R−. Let δ ∈ R++, and assume that (λ, µ) satisfy

(55) (∀n ∈ N) λn = µn = 1−
√

δ + 2−(n+1)

δ + 2−n
∈ ]0, 1[ .

Then λ∞ = µ∞ = 0. Suppose that y−1 ∈ R++ = X r (A ∪ B). Then the (λ, µ)-MARP sequences
are

(56) (∀n ∈ N) xn = yn−1

√
δ + 2−(n+1)

δ + 2−n
and yn = xn

√
δ + 2−(n+1)

δ + 2−n
,

which inductively leads to

(57) xn = y−1

√
δ + 2−(n+1)

δ + 2−n

(
δ + 2−n

δ + 1

)
and yn = y−1

δ + 2−(n+1)

δ + 1
.

Note that limn∈N xn = limn∈N yn = δy−1

δ+1 /∈ A ∪ B.

Example 5.5 (MARP limit point lies in A ∩ B and λ∞ = µ∞ = 0) Suppose that X = S = R, that
A = B = R−, and that λ∞ = µ∞ = 0 while ∑n∈N λn = ∑n∈N µn = +∞. Furthermore, assume that
y−1 = η ∈ R++. Then

(58) (∀n ∈ N) xn = η
n

∏
i=0

(1− λi)
n−1

∏
i=0

(1− µi) and yn = η
n

∏
i=0

(1− λi)
n

∏
i=0

(1− µi),
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and so

ln(yn/η) = ln
( n

∏
i=0

(1− λi)
n

∏
i=0

(1− µi)
)
=

n

∑
i=0

ln(1− λi) +
n

∑
i=0

ln(1− µi)(59a)

≤
n

∑
i=0

(−λi) +
n

∑
i=0

(−µi)→ −∞.(59b)

It follows that yn → 0 and thus xn → 0. Hence limn∈N xn = limn∈N yn ∈ A ∩ B.

Example 5.6 (MARP limit point lies outside A ∩ B and λ∞ > 0 = µ∞) Suppose that X = S =

R
2, that A = R × {0}, that B = {0} × R, that (∀n ∈ N) λn = 1

2 and µn = 1 − 1+2−(n+1)

1+2−n , and
that y−1 = (η, ζ) ∈ X r A. Then

(60) (∀n ∈ N) xn =
(

η

2n+1 , ζ(1+2−n)
2

)
and yn =

(
η

2n+1 , ζ(1+2−(n+1))
2

)
;

therefore, limn∈N xn = limn∈N yn = (0, ζ
2 ) ∈ B r A.

We now present the main convergence result of this section.

Theorem 5.7 (local linear convergence) Let r ∈ R++ and let θ ∈ [0, 1[. Assume that the following
hold:

(i) α0 < 1;

(ii) ρ̂ ≤ ρ < 1, where ρ̂ is as in Lemma 5.2;

(iii) max
{

dA(y−1), dB(y−1)
}
≤ r(1−ρ)

2α0(1+α0)
;

(iv)

(61)
(
∀x ∈ S ∩ ball(y−1; r)

)(
∀a ∈ PAx

)(
∀b ∈ PBx

)
〈a− x, x− b〉 ≤ θ‖a− x‖ · ‖x− b‖.

Then the MARP sequences (xn)n∈N and (yn)n∈N converge linearly with rate ρ to some point c̄ ∈
ball(y−1; r) and

(62) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄‖

}
≤ r(1+ρ)

2 ρn.

Furthermore, if min{λ∞, µ∞} > 0, then c̄ ∈ A ∩ B.

Proof. Combining (49) and Proposition 3.6, we deduce that (xn)n∈N and (yn)n∈N lie in S.

We now claim that (xn)n∈N and (yn)n≥−1 have the alternating contraction property at y−1

with parameters (r, ρ) (see Definition 4.2). Let us fix n ∈ N and check (38) for the quadruple
(yn−1, xn, yn, xn+1); the other quadruple (xn, yn, xn+1, yn+1) is treated similarly. We assume that
‖xn − y−1‖ ≤ r. Since an ∈ PAxn and bn ∈ PBxn (see Definition 3.2), (61) yields

(63) 〈an − xn, xn − bn〉 ≤ θ‖an − xn‖ · ‖xn − bn‖.

Proposition 3.3(iii) implies that yn−1 − xn = λn
1−λn

(xn − an) and yn − xn = µn

1−µn
(bn − xn); thus,

(64) 〈yn − xn, yn−1 − xn〉 ≤ θ‖yn − xn‖ · ‖xn − yn−1‖.
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Hence, by Lemma 3.8 and assumption (ii),

(65) ‖xn+1 − yn‖ ≤ ρ max
{
‖yn − xn‖, ‖xn − yn−1‖

}
.

Thus (38) holds, as claimed.

It now follows from (20d) of Lemma 3.7 and assumption (iii) that

(66) M := max
{
‖y0 − x0‖, ‖x0 − y−1‖

}
≤ α0(1 + α0)max

{
dA(y−1), dB(y−1)

}
≤ r(1−ρ)

2 .

Hence, by Theorem 4.3, (xn)n∈N and (yn)n∈N converge linearly to c̄ ∈ ball(y−1, r) and

(67) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄‖

}
≤ r(1+ρ)

2 ρn.

Finally, recall Proposition 5.3. �

Remark 5.8 (best bound for the convergence rate) In Theorem 5.7, the linear rate is tied to the
constant ρ̂ defined by (52). The computation of ρ̂ appears to be hard in general; however, the
upper bound provided in Lemma 5.2 is minimized when λ0 = λ∞ = µ0 = µ∞ = 1

2 , i.e., when

(∀n ∈ N) λn = µn = 1
2 , in which case

(68) 0 < ρ̂ =

√
1 + θ

2
< 1.

The following result concerns global convergence. As a consequence, it somewhat surprisingly
guarantees the nonemptiness of the intersection.

Corollary 5.9 (global convergence) Assume that 1 > α0 ≥ α∞ > 0 and that there exists θ ∈ [0, 1[
such that

(69)
(
∀x ∈ S

)(
∀a ∈ PAx

)(
∀b ∈ PBx

)
〈a− x, x− b〉 ≤ θ‖a− x‖ · ‖x− b‖.

Then the MARP sequences (xn)n∈N and (yn)n∈N converge linearly with rate ρ̂ to some point in A ∩ B,
where ρ̂ ∈ ]0, 1[ is defined in Lemma 5.2.

Example 5.10 (two subspaces) Suppose that A and B are affine subspaces with A ∩ B 6= ∅, that
S = aff(A ∪ B), and that 1 > α0 ≥ α∞ > 0. Then there exists θ ∈ [0, 1[ such that ρ̂ ∈ ]0, 1[, where ρ̂

is defined in Lemma 5.2. Moreover, the MARP sequences (xn)n∈N and (yn)n∈N converge linearly
with rate ρ̂ to some point in A ∩ B.

Proof. (See also [6, Theorem 5.7] for a closely related result.) After translating if necessary, we
assume that A and B are linear subspaces, and that S = A + B. Let x ∈ S, let a ∈ PAx, and let
b ∈ PBx. Using [8, Theorem 3.5], we have x− a ∈ N̂S

A(a) ⊆ NS
A(a) = NA(a) ∩ S = A⊥ ∩ (A + B).

Similarly, x− b ∈ B⊥ ∩ (A + B). Since A and B are subspaces and A⊥ ∩ (A + B)∩ B⊥ ∩ (A + B) =
(A + B) ∩ (A + B)⊥ = {0}, we set

(70) θ := max
〈

A⊥ ∩ (A⊥ ∩ B⊥)⊥ ∩ ball(0; 1), B⊥ ∩ (A⊥ ∩ B⊥)⊥ ∩ ball(0; 1)
〉
< 1.

(Thus, θ is the cosine of the Friedrichs angle between A⊥ and B⊥, which is identical to the cosine
of the Friedrichs angle between A and B.) Hence (69) holds and the conclusion now follows from
Corollary 5.9. �

In the spirit of [23] and [9], we now guarantee local linear convergence when the CQ condition
holds.
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Theorem 5.11 (local convergence via CQ condition) Suppose that 1 > α0 ≥ α∞ > 0, that c ∈ A∩ B
and that the (A, S, B, S)-CQ holds at c, i.e. (see Definition 2.5),

(71) NS
A(c) ∩ (−NS

B(c)) = {0}.

In view of (12), the limiting CQ number associated with (A, S, B, S) (see Definition 2.4) satisfies

(72) θ = max
{
〈u, v〉

∣∣∣ u ∈ NS
A(c), v ∈ −NS

B(c), ‖u‖ ≤ 1, ‖v‖ ≤ 1
}
< 1.

Let θ ∈
]
θ, 1

[
. Then there exists δ > 0 such that whenever the starting point y−1 lies in S ∩ ball(c; δ), the

sequences (xn)n∈N and (yn)n∈N generated by the MARP converge linearly to a point in A ∩ B with rate
ρ̂ ∈ ]0, 1[ (see Lemma 5.2).

Proof. There exists ε > 0 sufficiently small such that θ2ε ≤ θ, where θ2ε is the CQ number associated
with (A, S, B, S) and 2ε (see Definition 2.4). We claim that

(73) δ := ε(1−ρ̂)
1−ρ̂+2α0(1+α0)

does the job.

To this end, assume that y−1 ∈ S ∩ ball(c; δ) and set

(74) r := 2δα0(1+α0)
1−ρ̂ .

Since c ∈ A ∩ B, we deduce that

(75) max
{

dA(y−1), dB(y−1)
}
≤ ‖y−1 − c‖ ≤ δ = r(1−ρ̂)

2α0(1+α0)
,

which is assumption (iii) of Theorem 5.7.

Now let x ∈ S ∩ ball(y−1; r), let a ∈ PAx, and let b ∈ PBx. Using (73) and (74), we estimate

(76) ‖x− c‖ ≤ ‖x− y−1‖+ ‖y−1 − c‖ ≤ r + δ = ε.

Hence, ‖a− c‖ ≤ ‖a− x‖+ ‖x− c‖ = dA(x) + ‖x− c‖ ≤ 2‖x− c‖ ≤ 2ε. Analogously, ‖b− c‖ ≤
2ε. On the other hand, a− x ∈ −N̂S

A(a) and x− b ∈ N̂S
B(b). It thus follows from the definition of

the CQ-number (see (9)) and our choice of ε that

(77) 〈a− x, x− b〉 ≤ θ2ε‖a− x‖ · ‖x− b‖ ≤ θ‖a− x‖ · ‖x− b‖,

which is assumption (iv) of Theorem 5.7. Therefore, Theorem 5.7 implies that (xn)n∈N and (yn)n∈N

converge linearly to a point c̄ ∈ A ∩ B ∩ ball(y−1; r) and

(78) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄‖

}
≤ r(1+ρ̂)

2 ρ̂n = εα0(1+α0)(1+ρ̂)
1−ρ̂+2α0(1+α0)

ρ̂n.

We also note that c̄ ∈ ball(c; ε) because ‖c̄− c‖ ≤ ‖c̄− y−1‖+ ‖y−1 − c‖ ≤ r + δ = ε. �

Finally, we use Aharoni and Censor’s [1, Theorem 1] to obtain a linear convergence rate result
in the convex case.

Corollary 5.12 (two convex sets) Suppose that A and B are convex with ri A ∩ ri B 6= ∅, that S =
aff(A ∪ B), and that 1 > α0 ≥ α∞ > 0. Then the sequences (xn)n∈N and (yn)n∈N generated by the
MARP converge linearly to a point in A ∩ B.
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Proof. It is known that the MARP sequences converge to some point c ∈ A ∩ B; see, e.g., the
aforementioned [1, Theorem 1]. By [8, Proposition 7.5], the (A, S, B, S)-CQ condition holds at c. In
view of (12), the limiting CQ number associated with (A, S, B, S) (see Definition 2.4) satisfies

(79) θ = max
{
〈u, v〉

∣∣∣ u ∈ NS
A(c), v ∈ −NS

B(c), ‖u‖ ≤ 1, ‖v‖ ≤ 1
}
< 1.

Let θ ∈
]
θ, 1

[
and obtain δ > 0 as in Theorem 5.11. Since (xn)n∈N and (yn)n∈N converge to c,

there exists n0 ∈ N such that yn0 ∈ B(c; δ). The conclusion therefore follows from Theorem 5.11
(applied to the MARP with starting point yn0 ∈ S). �

6 Linear Convergence of the MARP and Regularity

We now investigate the MARP in the presence of regularity. We uphold the assumptions (49) of
the previous section.

The following result is a counterpart of Lemma 3.8; it refines [23, Theorem 5.2] and [9, Proposi-
tion 3.4].

Lemma 6.1 Let θ ∈ [0, 1[, let δ > 0, let ε ≥ 0 and let n ∈ N. Suppose that c ∈ A, that A is (S, ε, 2δ)-
regular at c (see Definition 2.2), and that the quadruple (yn−1, xn, yn, xn+1) generated by the MARP (see
Definition 3.2) with starting point y−1 ∈ S satisfies

(80) {xn, yn} ⊆ ball(c; δ) and 〈xn+1 − yn, xn − yn〉 ≤ θ‖xn+1 − yn‖ · ‖xn − yn‖.

Then

(81) ‖xn+1 − yn‖ ≤ λn+1

λn

(
θλn + 2ε + 1− λn

)
max

{
‖yn − xn‖, ‖xn − yn−1‖

}
.

Furthermore, the following implication holds:

(82) λn = 1 ⇒ ‖xn+1 − yn‖ ≤ λn+1(θ + 2ε)‖yn − xn‖.

Proof. Using Proposition 3.3(i), we have ‖an − c‖ ≤ ‖xn − an‖+ ‖xn − c‖ = dA(xn) + ‖xn − c‖ ≤
2‖xn − c‖ ≤ 2δ. Moreover, ‖an+1 − c‖ ≤ ‖an+1 − yn‖+ ‖yn − c‖ = dA(yn) + ‖yn − c‖ ≤ 2‖yn −
c‖ ≤ 2δ. Since yn − an+1 ∈ N̂S

A(an+1) and A is (S, ε, 2δ)-regular at c, we obtain

(83) 〈an+1 − yn, an+1 − an〉 ≤ ε‖an+1 − yn‖ · ‖an+1 − an‖.

Now an+1 − yn = 1
λn+1

(xn+1 − yn) (by Proposition 3.3(ii)) and (80) imply

(84) 〈an+1 − yn, xn − yn〉 ≤ θ‖an+1 − yn‖ · ‖xn − yn‖.

Adding (83), (84) and 〈an+1 − yn, an − xn〉 ≤ ‖an+1 − yn‖ · ‖an − xn‖, we obtain

(85)
‖an+1 − yn‖2 ≤ θ‖an+1 − yn‖ · ‖xn − yn‖

+ ε‖an+1 − yn‖ · ‖an+1 − an‖+ ‖an+1 − yn‖ · ‖an − xn‖;

thus,

(86) ‖an+1 − yn‖ ≤ θ‖yn − xn‖+ ε‖an+1 − an‖+ ‖an − xn‖.
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Substituting ‖an+1− an‖ ≤ ‖an+1− yn‖+ ‖an− yn‖ ≤ 2‖an− yn‖ ≤ 2‖yn− xn‖+ 2‖xn− an‖ into
(86) results in

(87) ‖an+1 − yn‖ ≤ (θ + 2ε)‖yn − xn‖+ (1 + 2ε)‖an − xn‖.

Therefore, since ‖an − xn‖ = 1−λn
λn
‖xn − yn−1‖ and ‖an+1 − yn‖ = 1

λn+1
‖xn+1 − yn‖ by Proposi-

tion 3.3(iii)&(ii), we obtain

‖xn+1 − yn‖ ≤ λn+1

λn

(
(θ + 2ε)λn‖yn − xn‖+ (1 + 2ε)(1− λn)‖xn − yn−1‖

)
(88a)

≤ λn+1

λn

(
(θ + 2ε)λn + (1 + 2ε)(1− λn)

)
max

{
‖yn − xn‖, ‖xn − yn−1‖

}
(88b)

= λn+1

λn

(
θλn + 2ε + 1− λn

)
max

{
‖yn − xn‖, ‖xn − yn−1‖

}
,(88c)

which is (81), as announced. Finally, (82) follows from (88a). �

Analogously to the proof of Lemma 6.1, we obtain the following result.

Lemma 6.2 Let θ ∈ [0, 1[, let δ > 0, let ε ≥ 0 and let n ∈ N. Suppose that c ∈ B, that B is (S, ε, 2δ)-
regular at c (see Definition 2.2), and that the quadruple (xn, yn, xn+1, yn+1) generated by the MARP (see
Definition 3.2) with starting point y−1 ∈ S satisfies

(89) {yn, xn+1} ⊆ ball(c; δ) and 〈yn+1 − xn+1, yn − xn+1〉 ≤ θ‖yn+1 − xn+1‖ · ‖yn − xn+1‖.

Then

(90) ‖yn+1 − xn+1‖ ≤ µn+1

µn

(
θµn + 2ε + 1− µn

)
max

{
‖xn+1 − yn‖, ‖yn − xn‖

}
.

Furthermore, the following implication holds:

(91) µn = 1 ⇒ ‖yn+1 − xn+1‖ ≤ µn+1(θ + 2ε)‖xn+1 − yn‖.

The next result will be useful later in this section.

Lemma 6.3 Assume that α∞ > 0 and let ε ∈ R++ and θ ∈ [0, 1[ be such that (1− θ)α∞ > 2ε. Then

0 < κ̂ := sup
n∈N

{
λn+1

λn

(
θλn + 2ε + 1− λn

)
,

µn+1

µn

(
θµn + 2ε + 1− µn

)}
(92a)

≤ 1−
(
(1− θ)α∞ − 2ε

)
< 1.(92b)

Proof. Clearly, 0 < κ̂. Since θ − 1 < 0, we obtain

(93) (∀n ∈ N) θλn + 2ε + 1− λn = (θ − 1)λn + 1 + 2ε ≤ (θ − 1)α∞ + 1 + 2ε

and θµn + 2ε + 1− µn ≤ (θ − 1)α∞ + 1 + 2ε. Therefore, κ̂ ≤ (θ − 1)α∞ + 1 + 2ε < 1. �

The proof of the following result is partially similar to that of Theorem 5.7; however, the linear
rates of convergence obtained are different.

Theorem 6.4 (MARP with regularity of sets) Let ε ≥ 0, δ > 0, and θ ∈ [0, 1− 2ε[. Assume that the
following hold:

(i) A and B are (S, ε, 2δ)-regular at c ∈ A ∩ B;
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(ii)
(
∀x ∈ S ∩ ball(c; δ)

)(
∀a ∈ PAx

)(
∀b ∈ PBx

)
〈a− x, x− b〉 ≤ θ‖a− x‖ · ‖x− b‖;

(iii) α∞ > 2ε/(1− θ) ≥ 0.

Assume also that the starting point y−1 of the MARP sequences (xn)n∈N and (yn)n∈N satisfies

(94) y−1 ∈ S and ‖y−1 − c‖ ≤ δ(1− κ̂)

1− κ̂ + 2α0(1 + α0)
,

where κ̂ ∈ ]0, 1[ is as in (92). Then (xn)n∈N and (yn)n∈N converge linearly to a point c̄ ∈ A ∩ B ∩
ball(c; δ) with rate κ̂; indeed,

(95) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄‖

}
≤ δα0(1 + α0)(1 + κ̂)

1− κ̂ + 2α0(1 + α0)
κ̂n.

Furthermore, if (∀n ∈ N) λn = µn = 1, then (xn)n∈N and (yn)n∈N converge linearly with rate κ̂2 =
(θ + 2ε)2:

(96) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄‖

}
≤ 2δ(1 + κ̂2)

(1 + κ̂)(5− κ̂)
κ̂2n.

Proof. Set

(97) r :=
2δα0(1 + α0)

1− κ̂ + 2α0(1 + α0)
.

We claim that

(98) (xn)n∈N and (yn)n∈N have the alternating contraction property

at y−1 with parameter (r, κ̂) (recall Definition 4.2). Let n ∈ N and consider first the quadruple
(yn−1, xn, yn, xn+1). In order to prove (38), we start by assuming that

(99) max
{
‖xn − y−1‖, ‖yn − y−1‖

}
≤ r.

Then, using (94) and (97), we obtain

(100) max
{
‖xn − c‖, ‖yn − c‖

}
≤ r + ‖y−1 − c‖ ≤ r +

δ(1− κ̂)

1− κ̂ + 2α0(1 + α0)
= δ.

Applying (ii) with yn, an+1 ∈ PAyn, and bn = PByn, we see that

(101) 〈an+1 − yn, yn − bn〉 ≤ θ‖an+1 − yn‖ · ‖yn − bn‖.

On the other hand, Proposition 3.3(ii)&(iii) implies an+1 − yn = 1
λn+1

(xn+1 − yn) and yn − bn =
1−µn

µn
(xn − yn). Altogether,

(102) 〈xn+1 − yn, xn − yn〉 ≤ θ‖xn+1 − yn‖ · ‖xn − yn‖.

In view of Lemma 6.1, we now deduce

(103) ‖xn+1 − yn‖ ≤ κ̂ max
{
‖yn − xn‖, ‖xn − yn−1‖

}
.
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This verifies (38) for the quadruple (yn−1, xn, yn, xn+1). The quadruple (xn, yn, xn+1, yn+1) is treated
similarly (invoke Lemma 6.2 instead of Lemma 6.1). Therefore, (98) holds.

Next, using inequality (20d) of Lemma 3.7, the assumption that c ∈ A ∩ B (see (i)), and (94), we
obtain

max
{
‖y0 − x0‖, ‖x0 − y−1‖

}
≤ α0(1 + α0)max

{
dA(y−1), dB(y−1)

}
(104a)

≤ α0(1 + α0)‖y−1 − c‖(104b)

≤ α0(1 + α0)δ(1− κ̂)

1− κ̂ + 2α0(1 + α0)
(104c)

=
r(1− κ̂)

2
.(104d)

Thus, Theorem 4.3 and (97) yield the existence of c̄ ∈ ball(y−1; r) such that

(105) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄‖

}
≤ r(1 + κ̂)

2
κ̂n =

δα0(1 + α0)(1 + κ̂)

1− κ̂ + 2α0(1 + α0)
κ̂n.

Furthermore, Theorem 4.3 also states that (99) holds for every n ∈ N; consequently, so does its con-
sequence (100). Also, Proposition 5.3, assumption (iii) and (100) imply that c̄ ∈ A ∩ B ∩ ball(c; δ).

Finally, we additionally assume that (∀n ∈ N) λn = µn = 1. Then α0 = α∞ = 1, κ̂ = θ + 2ε, and
r = 4δ

5−κ̂ . Combining (100), (102), (82) and (91) yields

(106) (∀n ∈ N) ‖xn+1 − yn‖ ≤ κ̂‖yn − xn‖ and ‖yn − xn‖ ≤ κ̂‖xn − yn−1‖;

consequently, ‖xn+1 − yn‖ ≤ κ̂2‖xn − yn−1‖ = κ̂2 max{‖yn − xn‖, ‖xn − yn−1‖} and similarly
‖yn+1 − xn+1‖2 ≤ κ̂2 max{‖xn+1 − yn‖, ‖yn − xn‖}. Thus, (xn)n∈N and (yn)n∈N have the con-
traction property at y−1 with parameters (r, κ̂2). Now, (39) holds with (r, κ̂2) because of (104) and

(107) M := max
{
‖y0 − x0‖, ‖x0 − y−1‖

}
≤ r(1−κ̂)

2 ≤ r(1−κ̂2)
2 .

Hence, Theorem 4.3 implies that (xn)n∈N and (yn)n∈N converge linearly with rate κ̂2 = (θ + 2ε)2;
in fact,

(108) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄‖

}
≤ M(1+κ̂2)

1−κ̂2 κ̂2n ≤ 2δ(1+κ̂2)
(1+κ̂)(5−κ̂)

κ̂2n.

This completes the proof. �

Remark 6.5 (comparing rates in the (S, 0, 2δ)-regular case) Consider Theorem 6.4 when A and B
are (S, 0, 2δ)-regular at c ∈ A∩ B, and α∞ > 0. This happens, e.g., when A and B are convex. Since
ε = 0, we have θ ∈ [0, 1[. Consider the function

(109) f : ]0, 1]→ ]0, 1[ : λ 7→ θλ + 1− λ√
λ2 + (1− λ)2 + 2θλ(1− λ)

.

Then

(110) f ′ : λ 7→ −λ(1− θ2)
(
λ2 + (1− λ)2 + 2θλ(1− λ)

)3/2
< 0.
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Hence f is strictly decreasing and therefore (∀n ∈ N) f (α∞) ≥ f (λ∞) ≥ f (λn); consequently,

(111a) (∀n ∈ N) λn+1

λn

(
θλn + 1− λn

)
≤ f (α∞)

λn+1

λn

√
λ2

n + (1− λn)2 + 2θλn(1− λn).

Similarly,

(111b) (∀n ∈ N) µn+1

µn

(
θµn + 1− µn

)
≤ f (α∞)

µn+1

µn

√
µ2

n + (1− µn)2 + 2θµn(1− µn).

On the other hand, κ̂ defined in (92) becomes

(112a) κ̂ = sup
n∈N

{
λn+1

λn

(
θλn + 1− λn

)
,

µn+1

µn

(
θµn + 1− µn

)}

while ρ̂ defined by (52) satisfies

(112b) ρ̂ = sup
n∈N





λn+1

λn

√
λ2

n + (1− λn)2 + 2θλn(1− λn),

µn+1

µn

√
µ2

n + (1− µn)2 + 2θµn(1− µn)





.

Altogether,

(113) κ̂ ≤ f (α∞)ρ̂ < ρ̂.

Therefore, the rate κ̂ is always better than the rate ρ̂.

Remark 6.6 (best bound for the convergence rate) In Theorem 6.4, the linear rate is bounded
above by the constant κ̂ defined in (92). Again, the actual computation of κ̂ seems to be hard
in general; however, the upper bound in Lemma 6.3 is minimized when (∀n ∈ N) λn = µn = 1,
in which case not only

(114) κ̂2 = (θ + 2ε)2

but we also obtain a better rate from Theorem 6.4, namely κ̂2! Comparing to the best bound
derived in Remark 5.8, we note that for fixed θ ∈ [0, 1[ and for all ε > 0 sufficiently small

(115) (θ + 2ε)2
< θ + 2ε <

√
θ <

√
1 + θ

2
.

Thus, when θ → 1−, we expect the linear rate of convergence for the MARP to approach that of
the unrelaxed MAP.

7 MARP with linearly vanishing relaxation parameters

In this section, we consider the (λ, µ)-MARP sequences with linearly vanishing relaxation param-
eters; specifically, we assume that

(116) η := sup
n∈N

{
λn+1

λn
,

µn+1

µn

}
< 1.

A concrete instance occurs when (∀n ∈ N) λn = λ0ηn and µn = µ0ηn.

The following result guarantees that the MARP sequences always converge linearly and globally
without any assumption on regularity or CQ-type conditions whatsoever.
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Theorem 7.1 The MARP sequences (xn)n∈N and (yn)n∈N converge linearly to some point c̄ ∈ X with
rate η; moreover,

(117) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄)‖

}
≤ M(1+η)

1−η · ηn,

where M := max{‖y0 − x0‖, ‖x0 − y−1‖}, and

(118) ‖c̄− y−1‖ ≤ 2α0(1+α0)
1−η max

{
dA(y−1), dB(y−1)

}
.

Proof. Let n ∈ N. Clearly, 〈yn − xn, yn−1 − xn〉 ≤ 1 · ‖yn − xn‖ · ‖xn − yn−1‖ because of Cauchy-
Schwarz. Lemma 3.8 (applied with θ = 1) yields

‖xn+1 − yn‖ ≤ λn+1

λn
max

{
‖yn − xn‖, ‖xn − yn−1‖

}
(119a)

≤ η max
{
‖yn − xn‖, ‖xn − yn−1‖

}
.(119b)

On the other hand, by using Lemma 3.9, we similarly obtain

(120) ‖yn+1 − xn+1‖ ≤ η max
{
‖xn+1 − yn‖, ‖yn − xn‖

}
.

Altogether,

max
{
‖yn+1 − xn+1‖, ‖xn+1 − yn‖

}
≤ η max

{
‖yn − xn‖, ‖xn − yn−1‖

}
(121a)

...(121b)

≤ ηn+1 max
{
‖y0 − x0‖, ‖x0 − y−1‖

}
(121c)

= Mηn+1.(121d)

Thus

(122) (∀n ∈ N) max
{
‖yn − xn‖, ‖xn − yn−1‖

}
≤ Mηn

because (122) holds for n = 0 by the definition of M. Therefore, by Lemma 4.1, there exists a point
c̄ ∈ X such that

(123) (∀n ∈ N) max
{
‖xn − c̄‖, ‖yn − c̄)‖

}
≤ M(1+η)

1−η · ηn,

i.e., (117) holds. In particular, ‖x0 − c̄‖ ≤ M(1+η)
1−η and thus

(124) ‖c̄− y−1‖ ≤ ‖x0 − y−1‖+ ‖x0 − c̄‖ ≤ M + M(1+η)
1−η = 2M

1−η .

On the other hand, Lemma 3.7 yields M ≤ α0(1 + α0)max{dA(y−1), dB(y−1)}. Altogether, we
obtain (118). �

Remark 7.2 It is interesting to compare the results of this section to some of the results of previous
sections. On the one hand, Theorem 7.1 yields universal and global linear convergence; however,
the location of the limit is not known to be in the intersection A ∩ B. On the other hand, Theo-
rem 5.11 and Theorem 6.4 guarantee linear convergence when a CQ condition or regularity holds,
respectively; nevertheless, these results are only local. We appear to witness here an “uncertainty
principle” which pits quality of convergence against location of the limit. It would be highly de-
sirable to design hybrid methods that guarantee global convergence to a point in the intersection
(or to prove that such an undertaking is hopeless).
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8 Further Examples

Proposition 8.1 Suppose that X = R and let (a, b, c) ∈ R++ ×R++ ×R−− satisfy

(125) max{a, b− 2a} < |c| = −c <
√

a2 + (b− a)2 < b.

Suppose that A = {a, c}, that B = {b, c}, that

(126) (∀n ∈ N) λn = µn = λ ∈
]

a + c +
√

c2 − a2

2a
,

b + c

2a

[
⊂ ]0, 1[

and that y−1 = 0. Then the following hold:

(i) The MAP cycles between a and b, and thus does not converge to a point in A ∩ B.

(ii) The λ-MARP converges linearly to c ∈ A ∩ B with rate 1− λ.

Proof. On the one hand, c2
< a2 + (b− a)2 ⇔ (b− a)2

> c2 − a2 ⇔ b− a = |b− a| >
√

c2 − a2 ⇔

(127) b + c > a + c +
√

c2 − a2 =
√
|c| − a

(√
|c|+ a−

√
|c| − a

)
> 0.

On the other hand, 2a > b + c > 0. Altogether, the interval from which λ is drawn is well defined
and we have

(128) b + c > 2aλ > a + c +
√

c2 − a2.

Since a = |a| < |c|, it follows that PAy−1 = PA0 = a. Hence

(129) x0 = λa.

Now b− 2a < |c| ⇔ b− a < a+ |c| ⇔ |b− a| < a− c⇔ |b− a| < |c− a|, so PBa = b and obviously
PAb = a. This proves (i).

Next, PBx0 = c⇔ |c− λa| < |b− λa| ⇔ λa + |c| < b− λa⇔ 2λa < b− |c| = b + c. By the first
inequality in (128), PBx0 = c and thus y0 = (1− λ)x0 + λPBx0 = (1− λ)λa + λc, i.e.,

(130) y0 = (1− λ)λa + λc.

We have PAy0 = c if and only if y0 < (c + a)/2, which is equivalent to 2(1− λ)λa + 2λc < a + c.
Viewed in terms of λ, this is a quadratic inequality which holds because of the second inequality
in (128). It follows that x1 = (1− λ)y0 + λPAy0, i.e.,

(131) x1 = (1− λ)
(
(1− λ)λa + λc

)
+ λc.

Furthermore, x0 − x1 = λa(2− λ)(λ− c/a) > 0 and so x1 < x0. Since already PBx0 = c, it follows
that PBx1 = c and therefore

(132) y1 = (1− λ)x1 + λc.

Thus, (∀n ∈ {2, 3, . . .}) xn = Tyn−1 and yn = Txn, where T : x 7→ (1−λ)x+λc is (1−λ)-Lipschitz
continuous with unique fixed point c. This completes the proof of (ii). �
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Example 8.2 (Examples 1.1 and 1.2 revisited) Consider Proposition 8.1 with c = −3 < a = 2 <

b = 6. Then max{a, b − 2a} = max{2, 6− 2 · 2} = max{2, 2} = 2 < 3 = −c < 4.47 ≈
√

20 =√
22 + (6− 2)2 =

√
a2 + (b− a)2 < 6 = b, and therefore (125) holds. We have b + c = 3, 2a = 4,

and a + c +
√

c2 − a2 = −1 +
√

9− 4 = −1 +
√

5 ≈ 1.23. Hence (126) turns into

(133)

√
5− 1

4
< λ <

3

4
;

note that since (−1 +
√

5)/4 ≈ 0.31, we can choose in particular λ = 1
2 . By Proposition 8.1, the

MAP with starting point 0 fails while the 1
2 -MARP converges linearly with rate 1

2 .

We have seen in the last example that MAP can fail to find a solution while MARP is able to
solve the the problem. On the other hand, MAP can be faster than MARP:

Example 8.3 (MARP and nonsummable relaxation parameters) Suppose that X = R
2, that A =

R×{0}, and that B = {0}×R. Then A∩ B = {(0, 0)}. On the one hand, regardless of the location
of y−1, the sequences for the (1, 1)-MARP, i.e., MAP, satisfy y0 = x1 = y1 = · · · = 0 ∈ A ∩ B and
thus convergence occurs in finitely many steps. On the other hand, let us now consider the MARP.
Writing y−1 = (η1, η2), one checks that for every n ∈ N,

(134a) xn =
(
η1 ∏

n−1
i=0 (1− µi), η2 ∏

n
i=0(1− λi)

)

and

(134b) yn =
(
η1 ∏

n
i=0(1− µi), η2 ∏

n
i=0(1− λi)

)
.

Thus if one of the relaxation parameters encountered is one, then we obtain finite convergence
in the corresponding coordinate. So assume that (∀n ∈ N) max{λn, µn} < 1, that η1 6= 0, and
that η2 6= 0. If λn → 0 and µn → 0, then (similarly to the discussion of Example 5.5 or see [4,
Proposition 2.1]), we have the following characterizations:

(i) (limn∈N xn, limn∈N yn) = (0, 0)⇔ ∑n∈N λn = ∑n∈N µn = +∞.

(ii) (limn∈N xn, limn∈N yn) ∈ A r {(0, 0)} ⇔ ∑n∈N λn = +∞, ∑n∈N µn < +∞.

(iii) (limn∈N xn, limn∈N yn) ∈ B r {(0, 0)} ⇔ ∑n∈N λn < +∞, ∑n∈N µn = +∞.

(iv) (limn∈N xn, limn∈N yn) 6∈ (A ∪ B)⇔ ∑n∈N λn < +∞, ∑n∈N µn < +∞.

This shows that when λ∞ = µ∞ = 0, all possibilities for limn∈N(xn, yn) occur. See also Exam-
ples 5.4, 5.5, and 5.6.

Remark 8.4 (convergence rates: actual vs upper bounds) In the previous sections, we have es-
tablished upper bounds for the linear convergence rates. Let us now make some comments on
the tightness of these estimates.

Consider the set up in Example 8.3 with (∀n ∈ N) λn = µn = λ ∈ ]0, 1]. Then (134) yields the
actual rate

(135) ρ̂actual := 1− λ ∈ [0, 1[ .
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Let us now turn to the estimates established earlier. On the one hand, since Corollary 5.9 holds
with θ = 0, we obtain from (52) that

(136) ρ̂ =
√

λ2 + (1− λ)2 > 1− λ = ρ̂actual.

On the other hand, the assumptions of Theorem 6.4 are satisfied with ε = 0, δ = +∞, S = X = R
2,

and θ = 0. Thus, the upper bound computed using (92) satisfies

(137) κ̂ = 1− λ = ρ̂actual.

9 A Doubly Non-Superregular Example

In this final section, we assume that X = R
2. We shall construct A and B exhibiting various

intriguing properties. We shall use tools from Euclidean geometry. Given (s, u, v) ∈ X3, we
denote the signed angle from the ray R+ × {0} to u by û; furthermore, ûsv = v̂su stands for the
usual (nonsigned) angle at the point s.

9.1 The Set Up

We assume that

(138) 4w ∈
[
0, π

2

]
and cos(4w) = 3

4 ,

so w ≈ 0.18. Define

(139) f : R → R : x 7→





0, if x ∈ ]−∞, 0] ∪ ]1,+∞[;

(tan w)
(
x− 1

2k

)
, if x ∈

]
3

2·2k+1 , 1
2k

]
and k ∈ N;

−(tan w)
(
x− 1

2k+1

)
, if x ∈

]
1

2k+1 , 3
2·2k+1

]
and k ∈ N.

Moreover, denote by Φ : R
2 → R

2 the reflector with respect to the line y = (tan 2w)x. Now we
assume that (see Figure 2)

(140) A =
{
(x, y) ∈ R

2
∣∣ y ≤ f (x)

}
, B = Φ(A), and c = (0, 0) ∈ A ∩ B,

and we also set

(141) (∀k ∈ N) sk := ( 1
2k , 0) and zk := Φ(sk).

9.2 The Normal Cones

Note that

(142) (∀a ∈ A)(∀k ∈ {1, 2, . . .}) NA(a) ⊆ NA(sk) :=
{

u ∈ R
2
∣∣ π

2 − w ≤ û ≤ π
2 + w

}
.

Let A′ be the reflection of A about R× {0}. Then, since ẑ0cs0 = 4w and B is obtained by rotating
A′ by the angle 4w about the origin c, it follows that

(143) (∀a′ ∈ A′) NA′(a′) ⊆ NA′(sk) = −NA(sk) =
{

u ∈ R
2
∣∣ −π

2 − w ≤ û ≤ −π
2 + w

}

and

(144) (∀b ∈ B) NB(b) ⊆
{

u ∈ R
2
∣∣ −π

2 + 3w ≤ û ≤ −π
2 + 5w

}
.
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Figure 2: Non-superregular sets in R
2

9.3 The CQ-number at c associated with (A, bdry A, B, bdry B)

Let δ > 0. Then for every k ∈ {1, 2, . . .}, the closed region W (see Figure 3) is a subset of P−1
A (sk);

thus,

(145) N̂
bdry B
A (sk) = cone

(
(P−1

A (sk) ∩ bdry B)− sk

)
= cone(W − sk) = NA(sk)

and

(146) N̂
bdry A
B (zk) = NB(zk).

We now compute the CQ-number at c associated with (A, bdry A, B, bdry B) and δ. Since

for every k ∈ {1, 2, . . .}, the normal cones N̂
bdry B
A (sk) and N̂

bdry A
B (zk) are the largest possi-

ble, it suffices in (9) to take the supremum over the points B(c; δ) ∩
{

sk

∣∣ k ∈ {1, 2, . . .}
}

and

B(c; δ) ∩
{

zk

∣∣ k ∈ {1, 2, . . .}
}

, respectively:

(147) θδ = sup

{
〈u, v〉

∣∣∣∣
u ∈ −N̂

bdry B
A (sk), v ∈ N̂

bdry A
B (zl), ‖u‖ ≤ 1, ‖v‖ ≤ 1,

‖sk‖ ≤ δ, ‖zl‖ ≤ δ, (k, l) ∈ {1, 2, . . .}2

}
.

It thus follows from (143) and (144) that
(148)

θδ = sup

{
〈u, v〉

∣∣∣∣ û ∈
[
−π

2 − w,−π
2 + w

]
and v̂ ∈

[
− π

2 + 3w,−π
2 + 5w

]
, ‖u‖ ≤ 1, ‖v‖ ≤ 1

}

= cos 2w =
√

1+cos 4w
2 =

√
7
8 .
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Figure 3: Inverse projections of sk

Therefore,

(149) (∀δ > 0) 0.93 < θ = θδ =
√

7
8 < 0.94.

9.4 A lower bound for ε in the (ε, δ)-regular case

Let k ∈ {1, 2, . . .}, and set d := ‖sk+1 − c‖. Then ‖zk − c‖ = ‖sk − c‖ = 2d. Now set β1 :=
‖zk − sk+1‖ and β2 := ‖zk − sk‖. Noticing that ẑkcsk = 4w and using the cosine theorem for the
two triangles△czksk+1 and△czksk, we have

β2
1 = d2 + (2d)2 − 2d(2d)(cos 4w) = d2 + 4d2 − 4d2( 3

4) = 2d2,(150a)

β2
2 = (2d)2 + (2d)2 − 2(2d)(2d)(cos 4w) = 4d2 + 4d2 − 8d2( 3

4 ) = 2d2.(150b)

Hence, β1 = β2 = d
√

2. This also implies PAzk ⊆ [s, sk] ∪ [s, sk+1] (see Figure 4). The cosine
theorem for the triangle△zksksk+1 gives

(151) cos ̂sk+1zksk =
β2

1+β2
2−d2

2β1β2
= 2d2+2d2−d2

2d
√

2d
√

2
= 3

4 > 0.

So we conclude that ̂sk+1zksk = 4w. Next, since ŝsk+1sk = ŝk+1sks = w, we have ŝk+1ssk = π − 2w.
On the other hand,

(152) ŝskzk = w + ̂sk+1skzk = w + π−4w
2 = π

2 − w.

Altogether,

(153) ŝskzk = ŝsk+1zk = ŝkszk = ŝk+1szk =
π
2 − w,
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Figure 4: Projections of zk on A

i.e., we have two isosceles triangles △zkssk+1 and △zkssk. Let h and h′ be the two mid-points

of [s, sk] and [s, sk+1]. Then, PAzk = {h, h′}. Clearly u := zk − h ∈ N̂
bdry B
A (h). Noticing that

ĥ′hzk = ŝhzk − ŝhh′ = π
2 − w, we have

(154)
〈

u
‖u‖ ,

sk+1−h
‖sk+1−h‖

〉
= cos ̂sk+1hzk > cos ĥ′hzk = cos(π

2 − w) = sin w > 0.17;

consequently,

(155) 〈u, sk+1 − h〉 > (0.17) · ‖u‖ · ‖sk+1 − h‖.

Now we assume that A is (bdry B, ε, δ)-regular at c for some ε ≥ 0 and δ > 0. Since sn → c and
zn → c, eventually all the points sk+1, sk, zk, h′, h lie in ball(c; δ). From the above argument, we

have u ∈ N̂
bdry B
A (h) and

(156) (0.17) · ‖u‖ · ‖sk+1 − h‖ < 〈u, sk+1 − h〉 ≤ ε · ‖u‖ · ‖sk+1 − h‖.

Thus

(157) ε > 0.17.

Similarly, if B is (bdry A, ε, δ)-regular, then ε > 0.17.

9.5 For the MAP, [9, Proposition 3.12] is never applicable

Consider [9, Proposition 3.12] with (Ã, B̃) = (bdry A, bdry B) and I = J singletons. Clearly [9,
(51)] holds. The two assumptions of [9, Proposition 3.12] are the following:
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(i) A is (bdry B, ε, 3δ)-regular.

(ii) The CQ-number θ3δ at c associated with (A, bdry A, B, bdry B) and 3δ satisfies θ3δ < 1− 2ε.

Assume that (i) holds. On the one hand, θ3δ > 0.93 by (149). On the other hand, ε > 0.17 by (157).
If (ii) holds, then we obtain the absurdity 0.93 < θ3δ < 1− 2ε < 0.66. We conclude that (i) and (ii)
cannot hold concurrently, which implies that [9, Proposition 3.12] is not applicable.

9.6 For the MAP, [9, Theorems 3.14 and 3.17] are never applicable

In view of (157), we note that A is not (bdry B)-superregular at c, and that B is not (bdry A)-
superregular at c. Therefore, the results in [23] are not applicable, and neither are [9, Theorems 3.14
and 3.17] with (Ã, B̃) = (bdry A, bdry B) and I and J singletons.

9.7 For the MARP, we deduce convergence with a linear rate

Indeed, suppose that S = X. The (A, X, B, X)-CQ condition holds, and so does the
(A, bdry A, B, bdry B)-CQ condition. Hence, Theorem 5.11 applies and yields local convergence
for the MARP sequences. Moreover, by (149), we can make ε in (73), and hence δ = +∞, arbitrar-
ily large. Thus the MARP converges with a linear rate regardless of the starting point. Note that
Corollary 5.9 also yields the global convergence result.

The figures suggest that the sequences generated by the MAP also converge with a linear rate.
It would be interesting either to find theorems that allow for this conclusion or to at least obtain a
partition of A and B so that the results of [9] are applicable to the induced collections (Ã, B̃).
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[31] C. ZĂLINESCU, Convex Analysis in General Vector Spaces, World Scientific Publishing (2002).

28


	Introduction
	Auxiliary Notions
	MARP: Basic Properties
	Abstract Linear Convergence
	Linear Convergence of the MARP and the CQ Condition
	Linear Convergence of the MARP and Regularity
	MARP with linearly vanishing relaxation parameters
	Further Examples
	A Doubly Non-Superregular Example
	The Set Up
	The Normal Cones
	The CQ-number at  c  associated with  (A,bdryA, B,bdryB)
	A lower bound for  in the (,)-regular case
	For the MAP, [Proposition 3.12]one is never applicable
	For the MAP, [Theorems 3.14 and 3.17]one are never applicable
	For the MARP, we deduce convergence with a linear rate


