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Abstract

We introduce regularity notions for averaged nonexpansive operators. Combined
with regularity notions of their fixed point sets, we obtain linear and strong
convergence results for quasicyclic, cyclic, and random iterations. New convergence
results on the Borwein–Tam method (BTM) and on the cylically anchored Douglas–
Rachford algorithm (CADRA) are also presented. Finally, we provide a numerical
comparison of BTM, CADRA and the classical method of cyclic projections for solv-
ing convex feasibility problems.
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Throughout this paper, X is a real Hilbert space with inner product 〈·, ·〉 and induced
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sets. This is an important problem in mathematics and engineering; see, e.g., [6], [7], [12],
[13], [14], [20], [21], [29], and the references therein.

Oftentimes, the convex sets are given as fixed point sets of projections or (more gen-
erally) averaged nonexpansive operators. In this case, weak convergence to a solution is
guaranteed but the question arises under which circumstances can we guarantee strong
or even linear convergence. The situation is quite clear for projection algorithms; see, e.g.,
[6] and also [23].

The aim of this paper is to provide verifiable sufficient conditions for strong and linear
convergence of algorithms based on iterating convex combinations of averaged nonexpansive op-
erators.

Our results can be nontechnically summarized as follows: If each operator is well behaved
and the fixed point sets relate well to each other, then the algorithm converges strongly or linearly.

Specifically, we obtain the following main results on iterations of averaged nonexpan-
sive mappings:

• If each operator is boundedly linearly regular and the family of corresponding fixed
point sets is boundedly linearly regular, then quasicyclic averaged algorithms con-
verge linearly (Theorem 6.1).

• If each operator is boundedly regular and the family of corresponding fixed point
sets is boundedly regular, then cyclic algorithms converge strongly (Theorem 7.11).

• If each operator is boundedly regular and the family of corresponding fixed point
sets is innately boundedly regular, then random sequential algorithms converge
strongly (Theorem 7.14).

We also focus in particular on algorithms featuring the Douglas–Rachford splitting op-
erator and obtain new convergence results on the Borwein–Tam method and the cyclically
anchored Douglas–Rachford algorithm.

The remainder of the paper is organized as follows. In Sections 2 and 3, we discuss
(boundedly) linearly regular and averaged nonexpansive operators. The bounded linear
regularity of the Douglas–Rachford operator in the transversal case is obtained in Sec-
tion 4. In Section 5, we recall the key notions of Fejér monotonticity and regularity of
collections of sets. Our main convergence result on quasicyclic algorithms is presented
in Section 6. In Section 7, we turn to strong convergence results for cyclic and random
algorithms. Applications and numerical results are provided in Section 8. Notation in
this paper is quite standard and follows mostly [7]. The closed ball of radius r centred at
x is denoted by ball(x; r).
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2 Operators that are (boundedly) linearly regular

Our linear convergence results depend crucially on the concepts of (bounded) linear reg-
ularity which we introduce now.

Definition 2.1 ((bounded) linear regularity) Let T : X → X be such that Fix T 6= ∅. We
say that:

(i) T is linearly regular with constant κ ≥ 0 if

(1) (∀x ∈ X) dFix T(x) ≤ κ‖x− Tx‖.

(ii) T is boundedly linearly regular if

(2) (∀ρ > 0)(∃ κ ≥ 0)(∀x ∈ ball(0; ρ)) dFix T(x) ≤ κ‖x− Tx‖;

note that in general κ depends on ρ, which we sometimes indicate by writing κ = κ(ρ).

We clearly have the implication

(3) linearly regular⇒ boundedly linearly regular.

Example 2.2 (relaxed projectors) Let C be a nonempty closed convex subset of X and let
λ ∈ ]0, 2]. Then T = (1− λ) Id+λPC is linearly regular with constant λ−1.

Proof. Indeed, Fix T = C and (∀x ∈ X) dC(x) = ‖x− PCx‖ = λ−1‖x− Tx‖. �

The following example shows that an operator may be boundedly linearly regular yet
not linearly regular. This illustrates that the converse of the implication (3) fails.

Example 2.3 (thresholder) Suppose that X = R and set

(4) Tx =


0, if |x| ≤ 1;
x− 1, if x > 1;
x + 1, if x < −1.

Then T is boundedly linearly regular with κ(ρ) = max{ρ, 1}; however, T is not linearly
regular.

Proof. Let x ∈ X. Since Fix T = {0}, we deduce

(5) dFix T(x) = |x| = max
{
|x|, 1

}
min

{
|x|, 1

}
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and

(6) |x− Tx| =
{
|x|, if |x| ≤ 1;
1, if |x| > 1

= min
{
|x|, 1

}
.

If x /∈ Fix T, then dFix T(x)/|x− Tx| = max{|x|, 1} and the result follows. �

Theorem 2.4 Let T : X → X be linear and nonexpansive with ran(Id−T) closed. Then T is
linearly regular.

Proof. Set A = Id−T. Then A is maximally monotone by [7, Example 20.26], and
(Fix T)⊥ = (ker A)⊥ = ran A∗ = ran A = ran (Id−T) = ran(Id−T) using [7, Propo-
sition 20.17]. By the Closed Graph Theorem (see, e.g., [16, Theorem 8.18]), there exists
β > 0 such that

(7)
(
∀z ∈ ker(A)⊥)

)
‖Az‖ ≥ β‖z‖.

Now let x ∈ X and split x into x = y+ z, where y = Pker Ax = PFix Tx and z = P(ker A)⊥x =
Pran Ax = Pran(Id−T)x. Then

(8) ‖x− Tx‖ = ‖Ax‖ = ‖A(y + z)‖ = ‖Az‖ ≥ β‖z‖ = β‖x− PFix Tx‖ = βdFix T(x)

and the result follows. �

Example 2.5 (Douglas–Rachford operator for two subspaces) Let U and V be closed
subspaces of X such that U + V is closed, and set T = PV PU + PV⊥PU⊥ . Then Fix T =
(U ∩ V) + (U⊥ ∩ V⊥), and ran(Id−T) = (U + V) ∩ (U⊥ + V⊥) is closed; consequently,
T is linearly regular.

Proof. The formula for Fix T is in, e.g., [4]. On the one hand, it is well known (see, e.g., [7,
Corollary 15.35]) that U⊥ + V⊥ is closed as well. On the other hand, [10, Corollary 2.14]
implies that ran(Id−T) = (U + V) ∩ (U⊥ + V⊥). Altogether, ran(Id−T) is closed. Fi-
nally, apply Theorem 2.4. �

Example 2.6 Suppose that X = R2, let θ ∈ ]0, π/2], set U = R · (1, 0), V = R ·
(cos θ, sin θ), and T = PV PU + PV⊥PU⊥ . Then T is linearly regular with rate 1/ sin(θ).

Proof. Let x ∈ X. A direct computation (or [4, Section 5]) yields

(9) T = cos(θ)
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,
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i.e., T shrinks the vector by cos(θ) ∈ [0, 1[ and rotates it by θ. Hence Fix T = {0} and

(10) dFix T(x) = ‖x‖.

On the other hand, using 1− cos2(θ) = sin2(θ), we obtain

(11) Id−T = sin(θ)
(

sin(θ) cos(θ)
− cos(θ) sin(θ)

)
and hence

(12) ‖x− Tx‖ = sin(θ)‖x‖.

Altogether, dFix T(x) = ‖x‖ = (1/ sin(θ)) sin(θ)‖x‖ = (1/ sin(θ))‖x− Tx‖. �

We conclude this section by comparing our notion of bounded linear regularity to met-
ric regularity of set-valued operators.

Remark 2.7 Suppose that T is firmly nonexpansive and thus the resolvent of a maximally
monotone operator A. Suppose that x̄ ∈ X is such that 0 ∈ Ax̄, i.e., x̄ ∈ Fix T. Then metric
subregularity of A at x̄ means that there exists δ > 0 and γ > 0 such that x ∈ ball(x̄; δ)
⇒ dA−10(x) ≤ γdAx(0). In terms of T, this is expressed as x ∈ ball(x̄; δ) ⇒ dFix T(x) ≤
γ inf ‖x− T−1x‖. If x = Ty ∈ ball(x̄; δ), then

(13) dFix T(Ty) ≤ γ‖y− Ty‖;

moreover, dFix T(y) ≤ (1 + γ)‖y− Ty‖. This is related to bounded linear regularity of T.
The interested reader is referred to [18] for further information on metric subregularity;
see also [1] and [24].

3 Averaged nonexpansive operators

We work mostly within the class of averaged nonexpansive mappings which have proven
to be a good compromise between generality and usability.

Definition 3.1 The mapping T : X → X is averaged nonexpansive if there exists λ ∈ [0, 1[
and N : X → X nonexpansive such that T = (1− λ) Id+λN.

The class of averaged nonexpansive operators is closed under compositions and convex
combinations, and it includes all firmly nonexpansive mappings; see, e.g., [15] for further
information.
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Example 3.2 Let T : X → X be β-Lipschitz with β ∈ ]0, 1[. Then T is averaged.

Proof. Let ε ∈ ]0, (1− β)/2[ ⊂ ]0, 1[. Then (β + ε)/(1− ε) ∈ ]0, 1[. Now (1− ε)−1T is
(1− ε)−1β-Lipschitz and −ε(1− ε)−1 Id is ε(1− ε)−1-Lipschitz, hence

(14) N = (1− ε)−1T − ε(1− ε)−1 Id

is nonexpansive. Set λ = 1− ε ∈ ]0, 1[. Then (1− λ) Id+λN = ε Id+(1− ε)N = T and
T is therefore averaged. �

Fact 3.3 (See, e.g., [7, Proposition 4.25(iii)].) Let T : X → X be averaged nonexpansive. Then
there exists σ > 0 such that

(15) (∀x ∈ X)(∀z ∈ Fix T) σ‖x− Tx‖2 ≤ ‖x− z‖2 − ‖Tx− z‖2.

The following two properties are crucial to our subsequent analysis.

Corollary 3.4 (σ(T) notation) Let T : X → X be averaged nonexpansive. Then there exists
σ = σ(T) > 0 such that for every nonempty subset C of Fix T, we have

(16) (∀x ∈ X) σ‖x− Tx‖2 ≤ d2
C(x)− d2

C(Tx).

Corollary 3.5 Let I be a finite ordered index set, let (Ti)i∈I be family of averaged nonexpan-
sive operators with σi = σ(Ti), and let (ωi)i∈I be in [0, 1] such that ∑i∈I ωi = 1. Set
I+ =

{
i ∈ I

∣∣ ωi > 0
}

, and set σ+ = mini∈I+ σi. Let x ∈ X, and set y = ∑i∈I ωiTix. Then(
∀z ∈

⋂
i∈I+

Fix Ti
)
‖x− z‖2 ≥ ‖y− z‖2 + ∑

i∈I
ωiσi‖x− Tix‖2(17a)

≥ ‖y− z‖2 + σ+‖x− y‖2.(17b)

Proof. Indeed, we have

‖y− z‖2 ≤∑
i∈I

ωi‖Tix− z‖2 ≤∑
i∈I

ωi
(
‖x− z‖2 − σi‖x− Tix‖2)(18a)

= ‖x− z‖2 −∑
i∈I

ωiσi‖x− Tix‖2 ≤ ‖x− z‖2 − σ+‖x− y‖2,(18b)

as required. �

Lemma 3.6 Let T : X → X be averaged nonexpansive such that

(19) (∀ρ > 0)(∃ θ < 1)(∀x ∈ ball(0; ρ))(∃ y ∈ Fix T)
〈x− y, Tx− y〉 ≤ θ‖x− y‖‖Tx− y‖.

Then T is boundedly linearly regular; moreover, T is linearly regular if θ does not depend on ρ.
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Proof. We abbreviate σ(T) by σ. Let ρ > 0 and let x ∈ ball(0; ρ). Obtain θ and y ∈ Fix T as
in (19). Then

‖x− Tx‖2 = ‖x− y‖2 + ‖y− Tx‖2 + 2 〈x− y, y− Tx〉(20a)

≥ ‖x− y‖2 + ‖y− Tx‖2 − 2θ‖x− y‖‖Tx− y‖(20b)

= (1− θ)
(
‖x− y‖2 + ‖y− Tx‖2)+ θ

(
‖x− y‖ − ‖y− Tx‖

)2(20c)

≥ (1− θ)‖x− y‖2.(20d)

Hence (1− θ)−1‖x− Tx‖2 ≥ d2
Fix T(x). �

The following example can be viewed as a generalization of Example 2.6.

Example 3.7 Suppose that S : X → X is linear such that S∗ = −S and (∀x ∈ X) ‖Sx‖ =
‖x‖. Let α ∈ ]0, π/2], let β ∈ ]−1, 1[, and set T = β(cos(α) Id+ sin(α)S). Then T is
linearly regular.

Proof. Set R = cos(α) Id+ sin(α)S. Then T = βR and (∀x ∈ X) ‖Rx‖ = ‖Sx‖ = ‖x‖;
hence ‖T‖ = |β| < 1. By Example 3.2, T is averaged. Furthermore, (∀x ∈ X)
〈x, Tx〉 = β cos(α)‖x‖2 = cos(α)‖x‖‖βRx‖ = cos(α)‖x‖‖Tx‖. The linear regularity of T
thus follows from Lemma 3.6. �

We conclude this section with some key inequalities.

Lemma 3.8 (key inequalities) Let T : X → X be averaged nonexpansive and boundedly lin-
early regular, and let ρ > 0. Suppose that C is a nonempty subset of Fix T. Then there exist
α ∈ [0, 1[, β ∈ ]0, 1], and γ > 0 such that for every x ∈ ball(0; ρ), we have

dFix T(Tx) ≤ αdFix T(x);(21)

βd2
Fix T(x) ≤

(
dFix T(x)− dFix T(Tx)

)2 ≤ ‖x− Tx‖2;(22)

d2
C(Tx) ≤ d2

C(x)− γd2
Fix T(x).(23)

If T is linearly regular, then these constants do not depend on ρ.

Proof. Let us obtain the constants κ = κ(ρ) ≥ 0 from bounded linear regularity and σ =
σ(T) from the averaged nonexpansiveness. Abbreviate Z = Fix T, and let x ∈ ball(0; ρ).
Then d2

Z(Tx) ≤ d2
Z(x) ≤ κ2‖x− Tx‖2 ≤ σ−1κ2(d2

Z(x)− d2
Z(Tx)) by Corollary 3.4. Hence

(21) holds with

(24) α =

√
σ−1κ2

1 + σ−1κ2 ∈ [0, 1[ .
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Note that α depends only on T when T is in addition linearly regular. Next, we set

(25) β = (1− α)2 ∈ ]0, 1] , and γ = σκ−2,

which again depend only on T in the presence of linear regularity. Then, by (21), dZ(x)−
dZ(Tx) ≥ (1− α)dZ(x). Since dZ is nonexpansive, we deduce

(26) βd2
Z(x) ≤

(
dZ(x)− dZ(Tx)

)2 ≤ ‖x− Tx‖2,

i.e., (22). Finally, using Corollary 3.4, we conclude that

d2
C(Tx) ≤ d2

C(x)− σ‖x− Tx‖2 ≤ d2
C(x)− σκ−2d2

Z(x),(27)

i.e., (23) holds. �

4 The Douglas–Rachford Operator for Tranversal Sets

In this section, X is finite-dimensional, A and B are nonempty closed convex subsets of X
with A ∩ B 6= ∅. Moreover, L = aff(A ∪ B), Y = L− L = span (B− A), denote the affine
span of A ∪ B and the corresponding parallel space, respectively. We also set

(28) T = PBRA + Id−PA,

i.e., T is the Douglas–Rachford operator for (A, B). Note that T(L) ⊆ L. Our next two
results are essentially contained in [26], where even nonconvex settings were considered.
In our present convex setting, the proofs become much less technical.

Proposition 4.1 The following hold:

(i) Fix T = (A ∩ B) + NA−B(0) = (A ∩ B) +
(
Y ∩ NA−B(0)

)
+ Y⊥.

(ii) L ∩ Fix T = (A ∩ B) + (Y ∩ NA−B(0)).

(iii) If ri A ∩ ri B 6= ∅, then Fix T = (A ∩ B) + Y⊥ and L ∩ Fix T = A ∩ B.

(iv) If ri A ∩ ri B 6= ∅, then PFix T = Id−PL + PA∩BPL.

(v) (∀n ∈N) Tn = Id−PL + TnPL.

(vi) Id−T = PL − TPL.

(vii) If ri A ∩ ri B 6= ∅, then dFix T = dA∩B ◦ PL.

8



Proof. (i): This follows from [8, Corollary 3.9] and [9, Theorem 3.5]. (ii): Clear from (i).
(iii): (See also [26, Lemma 6.5 and Theorem 6.12].) Use (i), (ii), and [9, Theorem 3.5 and
Theorem 3.13]. (iv): Write L = ` + Y, where ` ∈ Y⊥. Then PL(A ∩ B) = A ∩ B =
`+ PY(A ∩ B) and hence Fix T = PY(A ∩ B)⊕ (`+ Y⊥). Now use [7, Proposition 28.1(i)
and Proposition 28.6]. (v): (See also [26, Theorem 3.16].) By [9, Lemma 3.3], PA = PAPL
and PB = PBPL. Moreover, PL is affine. This implies RA = RAPL + PL− Id, PLRA = RAPL,
and PBRA = PBPLRA = PBRAPL. It follows that T = Id−PL + TPL = Id−PL + PLTPL.
The result follows then by induction. (vi): (See also [26, Theorem 3.16].) Clear from (v).
(vii): Clear from (iv). �

Lemma 4.2 Suppose ri A ∩ ri B 6= ∅, and let c ∈ A ∩ B. Then there exists δ > 0 and θ < 1
such that

(29)
(
∀x ∈ L ∩ ball(c; δ)

)
〈PAx− RAx, PBRAx− RAx〉 ≤ θdA(x)dB(RAx);

consequently,

(30)
(
∀x ∈ L ∩ ball(c; δ)

)
‖x− Tx‖2 ≥ 1− θ

5
max

{
d2

A(x), d2
B(x)

}
.

Proof. Since ri A ∩ ri B 6= ∅, we deduce from [9, Lemma 3.1 and Theorem 3.13] that

(31) NA(c) ∩
(
− NB(c)

)
∩Y = {0}.

Now suppose that (29) fails. Noting that PA − RA = Id−PA, we obtain a sequence
(xn)n∈N in L converging to c and a sequence θn → 1− such that for every n ∈N,

(32) 〈PAxn − RAxn, PBRAxn − RAxn〉 > θn‖PAxn − RAxn‖‖PBRAxn − RAxn‖.

Hence

(33)
〈

xn − PAxn

‖xn − PAxn‖
,

PBRAxn − RAxn

‖PBRAxn − RAxn‖

〉
→ 1−.

Set un = (xn − PAxn)/‖xn − PAxn‖ ∈ Y ∩ NA(PAxn) and vn = (PBRAxn −
RAxn)/‖PBRAxn − RAxn‖ ∈ Y ∩ −NB(PBRAxn). After passing to subsequences if nec-
essary we assume that un → u and vn → v. Then 〈u, v〉 = 1 and thus v = u. Since xn → c,
we deduce that PAxn → PAc = c, RAxn → c, and PBRAxn → c. Thus, u ∈ NA(c) and
−u ∈ NB(c). Altogether, u ∈ NA(c) ∩ (−NB(c)) ∩ Y r {0}, which contradicts (31). We
thus have proved (29).

Now let x ∈ ball(c; δ) ∩ L. Because dB is nonexpansive and RA − Id = 2(PA − Id), we
deduce with the Cauchy–Schwarz inequality that

d2
B(x) ≤

(
‖x− RAx‖+ dB(RAx)

)2
=
(
2dA(x) + dB(RAx)

)2(34a)
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≤ 5
(
d2

A(x) + d2
B(RAx)

)
.(34b)

Using (29), we have

‖x− Tx‖2 = ‖PAx− PBRAx‖2(35a)

= ‖(PAx− RAx) + (RAx− PBRAx)‖2(35b)

= ‖PAx− RAx‖2 + ‖RAx− PBRAx‖2 + 2 〈PAx− RAx, RAx− PBRAx〉(35c)

≥ d2
A(x) + d2

B(RAx)− 2θdA(x)dB(RAx)(35d)

= (1− θ)
(
d2

A(x) + d2
B(RAx)

)
+ θ
(
dA(x)− dB(RAx)

)2(35e)

≥ (1− θ)
(
d2

A(x) + d2
B(RAx)

)
(35f)

≥ 1− θ

5
max

{
d2

A(x), d2
B(x)

}
,(35g)

as claimed. �

Lemma 4.3 Suppose that ri A ∩ ri B 6= ∅. Then

(36) (∀ρ > 0)(∃ κ > 0)(∀x ∈ L ∩ ball(0; ρ)) ‖x− Tx‖ ≥ κdA∩B(x).

Proof. We argue by contradiction and assume the conclusion fails. Then there exists a
bounded sequence (xn)n∈N in L and a sequence εn → 0+ such that

(37) (∀n ∈N) ‖xn − Txn‖ < εndA∩B(xn)→ 0.

In particular, dA∩B(xn) > 0 and xn− Txn → 0. After passing to subsequences if necessary,
we assume that xn → x̄. Then x̄ ∈ L ∩ Fix T. By Proposition 4.1(iii), x̄ ∈ A ∩ B. Using
Lemma 4.2 and after passing to another subsequence if necessary, we obtain θ < 1 such
that

(38) (∀n ∈N) ‖xn − Txn‖2 ≥ 1− θ

5
max

{
d2

A(xn), d2
B(xn)

}
.

Next, bounded linear regularity of (A, B) (see Fact 5.8(viii) below) yields µ > 0 such that
(∀n ∈N) dA∩B(xn) ≤ µ max{dA(xn), dB(xn)}. Combining this with (37) and (38) yields

(∀n ∈N) ε2
nd2

A∩B(xn) > ‖xn − Txn‖2 ≥ 1− θ

5
max

{
d2

A(xn), d2
B(xn)

}
(39)

≥ 1− θ

5µ2 d2
A∩B(xn).(40)

This is absurd since εn → 0+. �

We are now ready for the main result of this section.
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Theorem 4.4 (Douglas–Rachford operator for two transversal sets) Suppose that the pair
(A, B) is transversal, i.e., ri A ∩ ri B 6= ∅. Then T is boundedly linearly regular.

Proof. Write L = `+ Y, where ` ∈ Y⊥, let ρ > 0, and set ρL = ‖`‖+ ρ. Now obtain κ as in
Lemma 4.3, applied to ρL. Let x ∈ ball(0; ρ). Then ‖PLx‖ = ‖`+ PYx‖ ≤ ‖`‖+ ‖PYx‖ ≤
‖`‖+ ‖x‖ ≤ ρL. Hence ‖PLx−TPLx‖ ≥ κdA∩B(PLx). On the other hand, ‖PLx−TPLx‖ =
‖x− Tx‖ and dA∩B(PLx) = dFix T(x) by Proposition 4.1(vi)&(vii). Altogether, ‖x− Tx‖ ≥
κdFix T(x). �

Remark 4.5 Lemma 4.2, which lies at the heart of this section, is proved in much greater
generality in the recent paper [26]. The novelty here is to deduce bounded linear regu-
larity of the Douglas–Rachford operator (see Theorem 4.4) in order to make it a useful
building block to obtain other linear and strong convergence results.

5 Fejér Monotonicity and Set Regularities

5.1 Fejér monotone sequences and convergence for one operator

Since all algorithms considered in this paper generate Fejér monotone sequences, we re-
view this key notion next.

Definition 5.1 (Fejér monotone sequence) Let C be a nonempty subset of X, and let (xn)n∈N

be a sequence in X. Then (xn)n∈N is Fejér monotone with respect to C if

(41) (∀c ∈ C)(∀n ∈N) ‖xn+1 − c‖ ≤ ‖xn − c‖.

Clearly, every Fejér monotone sequence is bounded. Let us now review some results
concerning norm and linear convergence of Fejér monotone sequences.

Fact 5.2 (See, e.g., [6, Proposition 1.6].) Let (xn)n∈N be a sequence in X, let x̄ ∈ X, and let
p ∈ {1, 2, . . .}. Suppose that (xn)n∈N is Fejér monotone with respect to {x̄}, and that (xpn)n∈N

converges linearly to x̄. Then (xn)n∈N itself converges linearly to x̄.

Fact 5.3 Let (xn)n∈N be a sequence in X that is Fejér monotone with respect to a nonempty closed
convex subset C of X. Then the following hold:

(i) If there exists α ∈ [0, 1[ such that (∀n ∈N) dC(xn+1) ≤ αdC(xn), then (xn)n∈N con-
verges linearly to some point x̄ ∈ C; in fact,

(42) (∀n ∈N) ‖xn − x̄‖ ≤ 2αndC(x0).
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(ii) If C is an affine subspace and all weak cluster points of (xn)n∈N belong to C, then
xn ⇀ PCx0.

Proof. (i): See, e.g., [7, Theorem 5.12]. (ii): See, e.g., [7, Proposition 5.9(ii)]. �

Corollary 5.4 Let T : X → X be averaged nonexpansive and boundedly linearly regular, with
Fix T 6= ∅. Then for every x0 ∈ X, the sequence (Tnx0)n∈N converges linearly to some point
x̄ ∈ Fix T. If Fix T is an affine subspace, then x̄ = PFix Tx0.

Proof. Let x0 ∈ X. The sequence (Tnx0)n∈N is bounded because Fix T 6= ∅. By (21) of
Lemma 3.8, there exists α ∈ [0, 1[ such that (∀n ∈N) dFix T(xn+1) ≤ αdFix T(xn). Hence
Fact 5.3(i) implies linear convergence of (Tnx0)n∈N. The remainder of the theorem follows
from Fact 5.3(ii). �

Corollary 5.4 implies the following example, which was analyzed in much greater detail
in [4].

Example 5.5 (Douglas–Rachford operator for two subspaces) Let U and V be closed
subspaces such that U + V is closed, let x0 ∈ X, and set T = PV PU + PV⊥PU⊥ . Then
(Tnx0)n∈N converges linearly to PFix Tx0.

Proof. T is averaged (even firmly nonexpansive), and linearly regular by Example 2.5.
Now apply Corollary 5.4. �

Example 5.6 (Douglas–Rachford operator for transversal sets) Suppose that X is finite-
dimensional, and let U and V be closed convex subsets of X such that ri U ∩ ri V 6= ∅. Let
x0 ∈ X, and set T = PV RU + Id−PU. Then (Tnx0)n∈N converges linearly to some point
x̄ ∈ Fix T such that PU x̄ ∈ U ∩V.

Proof. Combine Theorem 4.4 with Corollary 5.4. �

5.2 Regularities for families of sets

We now recall the notion of a collection of regular sets and key criteria. (The literature
on regularity is vast and surveying it is outside the scope of this paper. Instead, we
refer the interested reader to [28, Section 6] as a starting point for very recent work on
regularity and constraint qualifications.) This will be crucial in the formulation of the
linear convergence results.
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Definition 5.7 ((bounded) (linear) regularity) Let (Ci)i∈I be a finite family of closed convex
subsets of X with C =

⋂
i∈I Ci 6= ∅. We say that1:

(i) (Ci)i∈I is linearly regular if (∃ µ > 0) (∀x ∈ X) dC(x) ≤ µ maxi∈I dCi(x).

(ii) (Ci)i∈I is boundedly linearly regular if (∀ρ > 0) (∃ µ > 0) (∀x ∈ ball(0; ρ)) dC(x) ≤
µ maxi∈I dCi(x).

(iii) (Ci)i∈I is regular if for every sequence (xn)n∈N in X, we have maxi∈I dCi(xn) → 0 ⇒
dC(xn)→ 0.

(iv) (Ci)i∈I is boundedly regular if for every bounded sequence (xn)n∈N in X, we have
maxi∈I dCi(xn)→ 0⇒ dC(xn)→ 0.

Fact 5.8 Suppose that I = {1, . . . , m}, and let (Ci)i∈I be a finite family of closed convex subsets
of X with C =

⋂
i∈I Ci 6= ∅. Then the following hold:

(i) Suppose each Ci is a subspace. Then (Ci)i∈I is regular in any of the four senses if and only
if ∑i∈I C⊥i is closed.

(ii) Suppose each Ci is a cone. Then (Ci ∩C	)i∈I is regular in any of the four senses if and only
if ∑i∈I(Ci ∩ C	)	 is closed.

(iii) Suppose each Ci is a cone and C = {0}. Then (Ci)i∈I is regular in any of the four senses if
and only if ∑i∈I C	i is closed.

(iv) If Cm ∩ int(C1 ∩ · · · ∩ Cm−1) 6= ∅, then (Ci)i∈I is boundedly linearly regular.

(v) If (C1, C2), (C1 ∩ C2, C3), . . . , (C1 ∩ · · · ∩ Cm−1, Cm) are (boundedly) linearly regular,
then so is (Ci)i∈I .

(vi) If 0 ∈ sri(C1 − C2), then (C1, C2) is boundedly linearly regular.

(vii) If each Ci is a polyhedron, then (Ci)i∈I is linearly regular.

(viii) If X is finite-dimensional, C1, . . . , Ck are polyhedra, and C1 ∩ · · ·Ck ∩ ri(Ck+1) ∩ · · · ∩
ri(Cm) 6= ∅, then (Ci)i∈I is boundedly linearly regular.

(ix) If X is finite-dimensional, then (Ci)i∈I is boundedly regular.

Proof. (i): [6, Theorem 5.19]. (ii): [17, Theorem 3.28]. (iii): [17, Corollary 3.30]. (iv): [6,
Corollary 5.14]. (v): [6, Theorem 5.11]. (vi): [5, Corollary 4.5]. (vii): [6, Corollary 5.26].
(viii): [3, Theorem 5.6.2]. (ix): [5, Proposition 5.4.(iii)]. �

1For each notion, one may replace the maximum by a sum because all norms on Euclidean spaces are
equivalent. As the results in this work are qualitative, all conclusions remain unchanged.

13



Definition 5.9 (innate regularity) Let (Ci)i∈I be a finite family of closed convex subsets of X
with C =

⋂
i∈I Ci 6= ∅. We say that (Ci)i∈I is innately boundedly regular if (Cj)j∈J is

boundedly regular for every nonempty subset J of I. Innate regularity and innate (bounded) linear
regularity are defined analogously.

Fact 5.8 allows to formulate a variety of conditions sufficient for innate regularity. Here,
we collect only some that are quite useful.

Corollary 5.10 Let (Ci)i∈I be a finite family of closed convex subsets of X with C =
⋂

i∈I Ci 6=
∅. Then the following hold:

(i) If X is finite-dimensional, then (Ci)i∈I is innately boundedly regular.

(ii) If X is finite-dimensional and
⋂

i∈I ri Ci 6= ∅, then (Ci)i∈I is innately linearly regular.

(iii) If each Ci is a subspace and ∑j∈J C⊥j is closed for every nonempty subset J of I, then (Ci)i∈I
is innately linearly regular.

Proof. (i): Fact 5.8(ix). (ii): Fact 5.8(viii). (iii): Fact 5.8(i). �

6 Convergence Results for Quasi-Cyclic Algorithms

Unless otherwise stated, we assume from now on that

(43) (Ti)i∈I

is a finite family of nonexpansive operators from X to X with common fixed point set

(44) Z =
⋂
i∈I

Zi 6= ∅, where (Zi)i∈I = (Fix Ti)i∈I .

We are now ready for our first main result.

Theorem 6.1 (quasi-cyclic algorithm) Suppose that each Ti is boundedly linearly regular and
averaged nonexpansive. Suppose furthermore that (Zi)i∈I is boundedly linearly regular. Let
(ωi,n)(i,n)∈I×N be such that (∀n ∈N) ∑i∈I ωi,n = 1 and (∀i ∈ I) ωi,n ∈ [0, 1]. Set (∀n ∈N)

In =
{

i ∈ I
∣∣ ωi,n > 0

}
and suppose that ω+ = infn∈N infi∈In ωi,n > 0. Suppose that there ex-

ists p ∈ {1, 2, . . .} such that (∀n ∈N) In ∪ In+1 ∪ · · · ∪ In+p−1 = I. Let x0 ∈ X and generate
a sequence (xn)n∈N in X by

(45) (∀n ∈N) xn+1 = ∑
i∈I

ωi,nTixn.

Then (xn)n∈N converges linearly to some point in Z.
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Proof. Set σ+ = mini∈I σi, where σi = σ(Ti). Let i ∈ I. By assumption,

(46) (∀k ∈N)(∃mk ∈ {kp, . . . , (k + 1)p− 1}) i ∈ Imk .

Then

(47) dZi(xkp) ≤ dZi(xmk) + ‖xkp − xmk‖ ≤ dZi(xmk) +
mk−1

∑
n=kp
‖xn − xn+1‖.

Hence, by using Cauchy–Schwarz,

(48) d2
Zi
(xkp) ≤ (mk + 1− kp)

(
d2

Zi
(xmk) +

mk−1

∑
n=kp
‖xn − xn+1‖2

)
.

Get β j as in (22) (with T replaced by Tj) and set β+ = minj∈I β j > 0. Let z ∈ Z. In view of
Corollary 3.5, it follows that

‖xkp − z‖2 − ‖x(k+1)p − z‖2 ≥ ‖xmk − z‖2 − ‖xmk+1 − z‖2(49a)

≥ ω+σ+‖xmk − Tixmk‖
2(49b)

≥ ω+σ+β+d2
Zi
(xmk).(49c)

On the other hand, by Corollary 3.5,

(50) (∀n ∈N) ‖xn − z‖2 − ‖xn+1 − z‖2 ≥ σ+‖xn − xn+1‖2.

In particular, (xn)n∈N is Fejér monotone with respect to Z. Now we combine all of the
above:

d2
Zi
(xkp) ≤ (mk + 1− kp)

(
d2

Zi
(xmk) +

mk−1

∑
n=kp
‖xn − xn+1‖2)(51a)

≤ p
(
ω−1
+ σ−1

+ β−1
+ + σ−1

+

)︸ ︷︷ ︸
=λ

(
‖xkp − z‖2 − ‖x(k+1)p − z‖2

)
.(51b)

Applying this with z = PZxkp (and releasing i) yields

(52) max
i∈I

d2
Zi
(xkp) ≤ λ

(
d2

Z(xkp)− d2
Z(x(k+1)p)

)
.

On the other hand, bounded linear regularity yields µ > 0 such that (∀n ∈N) dZ(xn) ≤
µ maxi∈I dZi(xn). Altogether,

(53) d2
Z(xkp) ≤ λµ2(d2

Z(xkp)− d2
Z(x(k+1)p)

)
.

By Fact 5.3(i), the sequence (xkp)k∈N converges linearly to some point z̄ ∈ Z. It now
follows from Fact 5.2 that (xn)n∈N converges linearly to z̄. �

Theorem 6.1 is quite flexible in the amount of control a user has in generating se-
quences. We point out two very popular instances next.

15



Corollary 6.2 (cyclic algorithm) Suppose that I = {1, . . . , m}, and that each Ti is boundedly
linearly regular and averaged nonexpansive. Suppose furthermore that (Zi)i∈I is boundedly lin-
early regular. Let x0 ∈ X and generate a sequence (xn)n∈N in X by

(54) (∀n ∈N) xn+1 = Tm · · · T2T1xn.

Then (xn)n∈N converges linearly to some point in Z.

Corollary 6.3 (parallel algorithm) Suppose that I = {1, . . . , m}, and that each Ti is bound-
edly linearly regular and averaged nonexpansive. Suppose furthermore that (Zi)i∈I is boundedly
linearly regular. Let x0 ∈ X and generate a sequence (xn)n∈N in X by

(55) (∀n ∈N) xn+1 =
1
m ∑

i∈I
Tixn.

Then (xn)n∈N converges linearly to some point in Z.

Some concrete and new results will be considered in Section 8; there are already several
known results that can be deduced from this framework (see, e.g., [6] and [23]).

Remark 6.4 We mention here the related frameworks by Kiwiel and Łopuch [23] who
bundled regularity of the fixed point sets together with regularity of the operators to
study accelerated generalizations of projection methods. Theirs and our techniques find
their roots in [6]; see also [3]. We feel that the approach presented here is more conve-
nient for applications; indeed, one first checks that the operators are well behaved — the
algorithms will be likewise if the fixed point sets relate well to each other.

We end this section with the following probabilistic result whose basic form is due
to Leventhal [25]. The proof presented here is somewhat simpler and the conclusion is
stronger.

Corollary 6.5 (probabilistic algorithm) Suppose that each Ti is boundedly linearly regular
and averaged nonexpansive. Suppose furthermore that (Zi)i∈I is boundedly linearly regular. Let
x0 ∈ X and generate a sequence (xn)n∈N in X by

(56) (∀n ∈N) xn+1 = Tixn

with probability πi > 0. Then (xn)n∈N converges linearly almost surely to a solution in the sense
that there exists a constant θ < 1, depending only on ‖x0‖, such that

(57) (∀n ∈N) E d2
Z(xn+1) ≤ θd2

Z(xn).
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Proof. Let z ∈ Z, and let n ∈N. Then ‖xn+1‖ = ‖Tixn‖ ≤ ‖Tixn − z‖ + ‖z‖ ≤ ‖xn −
z‖ + ‖z‖ ≤ ‖x0 − z‖ + ‖z‖, hence every instance of (xn)n∈N satisfies supn∈N ‖xn‖ ≤
‖x0 − z‖+ ‖z‖ = ρ. Hence, by (23) of Lemma 3.8, we obtain γi such that

(58) γid2
Zi
(xn) ≤ d2

Z(xn)− d2
Z(Tixn).

On the other hand, by bounded linear regularity of (Z1, . . . , Zm), we get µ > 0 such that

(59) µd2
Z(xn) ≤∑

i
πiγid2

Zi
(xn).

Combining and taking the expected value, we deduce

(60) µd2
Z(xn) ≤ d2

Z(xn)− E d2
Z(xn+1),

and the result follows with θ = 1− µ. �

7 Convergence Results for Cyclic and Random Algorithms

In this section, we focus on strong convergence results for algorithms which utilize the
operators either cyclically or in a more general, not necessarily quasicyclic, fashion. Sim-
ple examples involving projectors show that linear convergence results are not to be ex-
pected. Accordingly, the less restrictive notion of (bounded) regularity is introduced — it
is sufficient for strong convergence.

We start our analysis with the following notion which can be seen as a qualitative vari-
ant of (bounded) linear regularity.

Definition 7.1 ((bounded) regularity) Let T : X → X be such that Fix T 6= ∅. We say that:

(i) T is regular if for every sequence (xn)n∈N in X, we have

(61) xn − Txn → 0 ⇒ dFix T(xn)→ 0.

(ii) T is boundedly regular if for every sequence (xn)n∈N in X, we have

(62) (xn)n∈N bounded and xn − Txn → 0 ⇒ dFix T(xn)→ 0.

Comparing with Definition 2.1, we note that

(63) linear regularity⇒ regularity

17



and that

(64) bounded linear regularity⇒ bounded regularity.

These notions are much less restrictive than their quantitative linear counterparts:

Proposition 7.2 Let T : X → X be continuous, suppose that X is finite-dimensional 2 and that
Fix T 6= ∅. Then T is boundedly regular.

We now turn to “property (S)”, a notion first considered by Dye et al. in [19].

Definition 7.3 (property (S)) Let T : X → X be nonexpansive such that Fix T 6= ∅. Then
T has property (S) with respect to z ∈ Fix T if for every bounded sequence (xn)n∈N such that
‖xn − z‖ − ‖Txn − z‖ → 0, we have xn − Txn → 0.

Proposition 7.4 Let T : X → X be averaged nonexpansive such that Fix T 6= ∅. Then T has
property (S) with respect to Fix T.

Proof. Let (xn)n∈N be a bounded sequence in X such that ‖xn − z‖ − ‖Txn − z‖ → 0,
where z ∈ Fix T. Clearly, (‖xn − z‖ + ‖Txn − z‖)n∈N is bounded since (xn)n∈N and
(Txn)n∈N are. It follows that ‖xn− z‖2−‖Txn− z‖2 → 0. By Fact 3.3, xn− Txn → 0. �

Definition 7.5 (projective) Let T : X → X be nonexpansive such that Fix T 6= ∅, and let
z ∈ Fix T. Then T is projective with respect to z ∈ Fix T if for every bounded sequence (xn)n∈N

such that ‖xn − z‖ − ‖Txn − z‖ → 0, we have dFix T(xn)→ 0. We say that T is projective if it
is projective with respect to all its fixed points.

Projectivity implies property (S):

Lemma 7.6 Let T : X → X be nonexpansive and suppose that T is projective with respect to
z ∈ Fix T. Then T has property (S) with respect to z.

Proof. Observe that

(∀x ∈ X) ‖x− Tx‖ ≤ ‖x− PFix Tx‖+ ‖PFix Tx− Tx‖(65a)
≤ 2‖x− PFix Tx‖ = 2dFix T(x).(65b)

Now let (xn)n∈N be a bounded sequence such that ‖xn − z‖ − ‖Txn − z‖ → 0. Since T is
projective with respect to z, we have dFix T(xn)→ 0. By (65), xn − Txn → 0. �

The importance of projectivity stems from the following observation.

2Or, more generally, that ran T is boundedly compact.
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Fact 7.7 Let T : X → X be nonexpansive such that T is projective with respect to some fixed point
of T. Then (Tnx0)n∈N converges strongly to a fixed point for every starting point x0 ∈ X.

Proof. See [2, Lemma 2.8.(iii)]. �

Proposition 7.8 Let I = {1, . . . , m}, and let (Ti)i∈I be nonexpansive mappings with fixed point
sets (Zi)i∈I . Set Z =

⋂
i∈I Zi and suppose that there exists z ∈ Z such that each Ti is projective

with respect to z and that (Zi)i∈I is boundedly regular. Then T = Tm · · · T2T1 is projective with
respect to z as well. Consquently, for every x0 ∈ X, (Tnx0)n∈N converges strongly to some point
in Z.

Proof. Suppose that (xn)n∈N is a bounded sequence in X such that ‖xn − z‖ − ‖Txn −
z‖ → 0. Note that

(66) 0 ≤
m

∑
i=1
‖Ti−1 · · · T1xn − z‖ − ‖TiTi−1 · · · T1xn − z‖ = ‖xn − z‖ − ‖Txn − z‖ → 0,

that each sequence (Ti−1 · · · T1xn)n∈N is bounded, and that

(67) (∀i ∈ I) ‖Ti−1 · · · T1xn − z‖ − ‖TiTi−1 · · · T1xn − z‖ → 0.

Combining this with the assumption that each Ti is projective with respect to z, we deduce
two consequences. First,

(68) (∀i ∈ I) Ti−1 · · · T1xn − TiTi−1 · · · T1xn → 0

by Lemma 7.6. Second,

(69) (∀i ∈ I) dZi(Ti−1 · · · T1xn)→ 0.

Altogether, (∀i ∈ I) dZi(xn) → 0. Since (Zi)i∈I is boundedly regular, it follows that
dZ(xn) → 0. Now Z ⊆ Fix T yields dFix T ≤ dZ; consequently, dFix T(xn) → 0. Hence T is
projective with respect to z and the result now follows from Fact 7.7. �

Property (S) in tandem with bounded regularity implies projectivity, which turns out
to be crucial for the results on random algorithms.

Proposition 7.9 Let T : X → X be nonexpansive such that Fix T 6= ∅, and let z ∈ Fix T.
Suppose that T satisfies property (S) with respect to z, and that T is boundedly regular. Then T is
projective with respect to z.

Proof. Let (xn)n∈N be bounded such that ‖xn − z‖ − ‖Txn − z‖ → 0. By property (S),
xn − Txn → 0. By bounded regularity, dFix T(xn)→ 0, as required. �

The next result is quite useful.
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Corollary 7.10 Let T : X → X be averaged nonexpansive and boundedly regular such that
Fix T 6= ∅. Then T is projective with respect to Fix T.

Proof. Combine Proposition 7.4 and Proposition 7.9. �

We now obtain a powerful strong convergence result for cyclic algorithms.

Theorem 7.11 (cyclic algorithm) Set I = {1, . . . , m}, and let (Ti)i∈I be family of averaged
nonexpansive mappings from X to X with fixed point sets (Zi)i∈i, respectively. Suppose that each
Ti is boundedly regular, that Z =

⋂
i∈I Zi 6= ∅, and that (Zi)i∈I is boundedly regular. Then for

every x0 ∈ X, the sequence ((Tm · · · T1)
nx0)n∈N converges strongly to some point in Z.

Proof. By Corollary 7.10, each Ti is projective with respect to every point in Z. The result
thus follows from Proposition 7.8. �

Let us now turn to random algorithms.

Definition 7.12 (random map) The map r : N→ I is a random map for I if (∀i ∈ I) r−1(i)
contains infinitely many elements.

Fact 7.13 (See [2, Theorem 3.3].) Suppose that (Ti)i∈I are projective with respect to a common
fixed point, and that (Zi)i∈I is innately boundedly regular. Let x0 ∈ X, let r be a random map for
I, and generate a sequence (xn)n∈N in X by

(70) (∀n ∈N) xn+1 = Tr(n)xn.

Then (xn)n∈N converges strongly to some point in Z.

We are ready for our last main result.

Theorem 7.14 (random algorithm) Suppose that each Ti is averaged nonexpansive and bound-
edly regular, and that (Zi)i∈I is innately boundedly regular. Let x0 ∈ X, let r be a random map
for I, and generate a sequence (xn)n∈N in X by

(71) (∀n ∈N) xn+1 = Tr(n)xn.

Then (xn)n∈N converges strongly to some point z̄ ∈ Z. If Z is an affine subspace, then z̄ = PZx0.

Proof. By Corollary 7.10, each Ti is projective with respect to Zi and hence with respect to
Z. Now apply Fact 7.13 and Fact 5.3(ii). �
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8 Applications and Numerical Results

8.1 The Borwein–Tam Method (BTM)

In this section, I = {1, . . . , m} and (Ui)i∈I is a family of closed convex subsets of X with

(72) U =
⋂
i∈I

Ui 6= ∅.

Now set Um+1 = U1,

(73) (∀i ∈ I) Ti = TUi+1,Ui = PUi+1 RUi + Id−PUi , Zi = Fix Ti, Z =
⋂
i∈I

Zi

and define the Borwein–Tam operator by

(74) T = TmTm−1Tm−2 · · · T2T1.

The following result is due to Borwein and Tam (see [11, Theorem 3.1]):

Fact 8.1 (Borwein–Tam method (BTM)) Let x0 ∈ X and generate the sequence (xn)n∈N by

(75) (∀n ∈N) xn+1 = Tnx0.

Then (xn)n∈N converges weakly to a point x̄ ∈ Z such that PU1 x̄ = · · · = PUm x̄ ∈ U.

The following new results now follow from our analysis.

Corollary 8.2 (transversal sets) Suppose that X is finite-dimensional and that
⋂

i∈I ri(Ui) 6=
∅. Then the convergence of the Borwein–Tam method is with a linear rate.

Proof. Theorem 4.4 implies that each Ti is boundedly linearly regular. Now set (∀i ∈ I)
Yi = span (Ui+1 − Ui). By Proposition 4.1(iii), (∀i ∈ I) Zi = Ui ∩ Ui+1 + Y⊥i . It thus
follows from [27, Theorem 6.5 and Corollary 6.6.2] that (∀i ∈ I) ri(Ui)∩ ri(Ui+1) ⊆ ri(Ui ∩
Ui+1) + ri(Y⊥i ) = ri(Zi). Hence

⋂
i∈I ri(Zi) ⊇

⋂
i∈I ri(Ui) ∩ ri(Ui+1) 6= ∅. Therefore,

(Zi)i∈I is boundedly linearly regular by Fact 5.8(viii). The conclusion now follow from
Corollary 6.2. �

Corollary 8.3 (subspaces) Suppose that each Ui is a subspace3 with Ui + Ui+1 is closed, and
that (Zi)i∈I is boundedly linearly regular. Then the convergence of the Borwein–Tam method is
with a linear rate.

3A simple translation argument yields a version for affine subspaces with a nonempty intersection.
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Proof. Combine Example 2.5 with Corollary 6.2. �

Of course, using Theorem 6.1, we can formulate various variants for a general quasi-
cyclic variant. We conclude this section with a random version.

Example 8.4 (subspaces — random version) Suppose the hypothesis of Corollary 8.3
holds. Assume in addition that (Zi)i∈I is innately boundedly regular. Let r be a ran-
dom map for I, let x0 ∈ X, and set (∀n ∈N) xn+1 = Tr(n)xn. Then (xn)n∈N converges
strongly to PZx0.

Proof. Combine Example 2.5 with Theorem 7.14. �

8.2 The Cyclically Anchored Douglas–Rachford Algorithm (CADRA)

In this section, we assume that I = {1, . . . , m}, that A is a closed convex subset of X, also
referred to as the anchor, and that (Bi)i∈I is a family of closed convex subsets of X such
that

(76) C = A ∩
⋂
i∈I

Bi 6= ∅.

We set

(77) (∀i ∈ I) Ti = PBi RA + Id−PA, Zi = Fix Ti; Z =
⋂
i∈I

Zi.

The Cyclically Anchored Douglas–Rachford Algorithm (CADRA) with starting point x0 ∈ X
generates a sequence (xn)n∈N by iterating

(78) (∀n ∈N) xn+1 = Txn, where T = Tm · · · T2T1.

Note that when m = 1, then CADRA coincides with the classical Douglas–Rachford
algorithm4.

Let us record a central convergence result concerning the CADRA.

Theorem 8.5 (CADRA) The sequence (xn)n∈N generated by CADRA converges weakly to a
point x̄ ∈ Z such that PA x̄ ∈ C. Furthermore, the convergence is linear provided that one of the
following holds:

(i) X is finite-dimensional and that ri(A) ∩⋂i∈I ri(Bi) 6= ∅.

4This is not the case for the BTM considered in the previous subsection.
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(ii) A and each Bi is a subspace with A + Bi closed and that (Zi)i∈I is boundedly linearly
regular.

Proof. The weak convergence follows from e.g. [7, Theorem 5.22]. (i): Now combine
Theorem 4.4 with Corollary 6.2. (ii): Combine Example 2.5 with Corollary 6.2. �

One may also obtain a random version of CADRA by using Theorem 7.14.

8.3 Numerical experiments

We now work in X = R100. We set A = R50
+ ×{0} ⊂ X, and we let each Bi be a hyperplane

with normal vector in R100
++, where 1 ≤ i ≤ m and 1 ≤ m ≤ 50. Using the programming

language julia [22], we generated these data randomly, where for each m ∈ {1, . . . , 50},
the problem

(79) find x ∈ A ∩
⋂

i∈{1,...,m}
Bi

has a solution in ri A. We then choose 10 random starting points in R100
+ , each with

Euclidean norm equal to 100. Altogether, we obtain 50 problems and 500 instances for
each of the algorithms Cyclic Projections (CycP), BTM, and CADRA applied to the sets
A, B1, . . . , Bm. If (xn)n∈N is the main sequence generated by one of these algorithms and
(zn)n∈N = (PAxn)n∈N, then we terminate at stage n when

(80) max
{

dB1(zn), . . . , dBm(zn)
}
≤ 10−3.

We divide the 50 problems into 5 groups, depending on the value of m. In Table 1, we
record the median of the number of iterations required for each algorithm to terminate,
and we also list the number of wins5 that each algorithm is the fastest among the three.

Finally, we observe that CADRA performs quite well compared to CycP and BTM, es-
pecially when the range of parameters keep the problems moderately underdetermined.
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