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Abstract

The most important open problem in Monotone Operator Theory concerns the maximal
monotonicity of the sum of two maximal monotone operators provided that Rockafel-
lar’s constraint qualification holds.

In this note, we provide a new maximal monotonicity result for the sum of a maximal
monotone linear relation and the subdifferential operator of a proper, lower semicon-
tinuous, sublinear function. The proof relies on Rockafellar’s formula for the Fenchel
conjugate of the sum as well as some results on the Fitzpatrick function.
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1 Introduction

Throughout this paper, we assume that X is a real Banach space with norm ‖ · ‖, that X∗

is the continuous dual of X, and that X and X∗ are paired by 〈·, ·〉. Let A : X ⇒ X∗ be
a set-valued operator (also known as multifunction) from X to X∗, i.e., for every x ∈ X,
Ax ⊆ X∗, and let graA =

{
(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax

}
be the graph of A. Recall that A

is monotone if

(1)
(
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y, x∗ − y∗〉 ≥ 0,

and maximal monotone if A is monotone and A has no proper monotone extension (in
the sense of graph inclusion). We say A is a linear relation if graA is a linear subspace.
Monotone operators have proven to be a key class of objects in modern Optimization and
Analysis; see, e.g., the books [8, 9, 10, 13, 18, 19, 17, 28] and the references therein. (We also
adopt standard notation used in these books: domA =

{
x ∈ X | Ax 6= ∅

}
is the domain

of A. Given a subset C of X, intC is the interior of C, and C is the closure of C. We set
C⊥ := {x∗ ∈ X∗ | (∀c ∈ C) 〈x∗, c〉 = 0} and S⊥ := {x∗∗ ∈ X∗∗ | (∀s ∈ S) 〈x∗∗, s〉 = 0} for a
set S ⊆ X∗. The indicator function of C, written as ιC , is defined at x ∈ X by

ιC(x) :=

{
0, if x ∈ C;

∞, otherwise.
(2)

Given f : X → ]−∞,+∞], we set dom f = f−1(R) and f ∗ : X∗ → [−∞,+∞] : x∗ 7→
supx∈X(〈x, x∗〉 − f(x)) is the Fenchel conjugate of f . If f is convex and dom f 6= ∅, then
∂f : X ⇒ X∗ : x 7→

{
x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y)

}
is the subdifferential

operator of f . Recall that f is sublinear if f(0) = 0, f(x + y) ≤ f(x) + f(y), and f(λx) =
λf(x) for all x, y ∈ dom f and λ > 0. Finally, the closed unit ball in X is denoted by
BX :=

{
x ∈ X | ‖x‖ ≤ 1

}
.) Throughout, we shall identify X with its canonical image in

the bidual space X∗∗. Furthermore, X ×X∗ and (X ×X∗)∗ = X∗×X∗∗ are likewise paired
via 〈(x, x∗), (y∗, y∗∗)〉 = 〈x, y∗〉+ 〈x∗, y∗∗〉, where (x, x∗) ∈ X ×X∗ and (y∗, y∗∗) ∈ X∗×X∗∗.

Let A and B be maximal monotone operators from X to X∗. Clearly, the sum operator A+
B : X ⇒ X∗ : x 7→ Ax + Bx =

{
a∗ + b∗ | a∗ ∈ Ax and b∗ ∈ Bx

}
is monotone. Rockafellar’s

[16, Theorem 1] guarantees maximal monotonicity of A + B under the classical constraint
qualification domA ∩ int dom B 6= ∅ when X is reflexive. The most famous open problem
concerns the behaviour in nonreflexive Banach spaces. See Simons’ monograph [19] for a
comprehensive account of the recent developments.

Now we focus on the special case when A is a linear relation and B is the subdifferential
operator of a sublinear function f . We show that the sum theorem is true in this setting.
We note in passing that in [5], it was recently shown that the sum theorem is true when A
is a linear relation and B is the normal cone operator of a closed convex set. In reflexive
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Banach spaces, these two results are closely related since the subdifferential operator of a
sublinear function is the inverse of the normal cone operator. However, to the best of our
knowledge, these two results are independent even in reflexive Banach spaces because of the
constraint qualification. Recently, linear relations have increasingly been studied in detail;
see, e.g., [1, 2, 3, 4, 5, 6, 7, 14, 21, 24, 26, 27] and Cross’ book [11] for general background
on linear relations.

The remainder of this paper is organized as follows. In Section 2, we collect auxiliary
results for future reference and for the reader’s convenience. The main result (Theorem 3.1)
is proved in Section 3.

2 Auxiliary Results

Fact 2.1 (Rockafellar) (See [15, Theorem 3], [19, Corollary 10.3 and Theorem 18.1], or
[28, Theorem 2.8.7(iii)].)
Let f, g : X → ]−∞,+∞] be proper convex functions. Assume that there exists a point
x0 ∈ dom f ∩ dom g such that g is continuous at x0. Then for every z∗ ∈ X∗, there exists
y∗ ∈ X∗ such that

(3) (f + g)∗(z∗) = f ∗(y∗) + g∗(z∗ − y∗).

Furthermore, ∂(f + g) = ∂f + ∂g.

Fact 2.2 (Fitzpatrick) (See [12, Corollary 3.9].) Let A : X ⇒ X∗ be maximal monotone,
and set

(4) FA : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ sup
(a,a∗)∈graA

(
〈x, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉

)
,

which is the Fitzpatrick function associated with A. Then for every (x, x∗) ∈ X × X∗, the
inequality 〈x, x∗〉 ≤ FA(x, x∗) is true, and equality holds if and only if (x, x∗) ∈ graA.

Fact 2.3 (Simons) (See [19, Theorem 24.1(c)], and also [25, Proposition 3.2(i)&(xi) and
Theorem 4.1(b)] as well as [23].) Let A,B : X ⇒ X∗ be maximal monotone operators.
Assume

⋃
λ>0 λ [PX(domFA)− PX(domFB)] is a closed subspace, where PX : (x, x∗) ∈ X ×

X∗ → x. If

(5) (x, x∗) is monotonically related to gra(A+B)⇒ x ∈ domA ∩ domB,

then A+B is maximal monotone.
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Fact 2.4 (Simons) (See [19, Lemma 19.7 and Section 22].) Let A : X ⇒ X∗ be a monotone
linear relation such that graA 6= ∅. Then the function

(6) g : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ 〈x, x∗〉+ ιgraA(x, x∗)

is proper and convex.

Fact 2.5 (Simons) (See [20, Lemma 2.2].) Let f : X → ]−∞,+∞] be proper, lower
semicontinuous, and convex. Let x ∈ X and λ ∈ R be such that inf f < λ < f(x) ≤ +∞,
and set

K := sup
a∈X,a 6=x

λ− f(a)

‖x− a‖
.

Then K ∈ ]0,+∞[ and for every ε ∈ ]0, 1[, there exists (y, y∗) ∈ gra ∂f such that

〈y − x, y∗〉 ≤ −(1− ε)K‖y − x‖ < 0.(7)

Fact 2.6 (See [28, Therorem 2.4.14].) Let f : X → ]−∞,+∞] be a sublinear function.
Then the following hold.

(i) ∂f(x) = {x∗ ∈ ∂f(0) | 〈x∗, x〉 = f(x)}, ∀x ∈ dom f .

(ii) ∂f(0) 6= ∅⇔ f is lower semicontinuous at 0.

(iii) If f is lower semicontinuous, then f = sup〈·, ∂f(0)〉.

Fact 2.7 (See [13, Proposition 3.3 and Proposition 1.11].) Let f : X → ]−∞,+∞] be a
lower semicontinuous convex and int dom f 6= ∅. Then f is continuous on int dom f and
∂f(x) 6= ∅ for every x ∈ int dom f .

Lemma 2.8 Let f : X → ]−∞,+∞] be a sublinear function. Then dom f + int dom f =
int dom f .

Proof. The result is trivial when int dom f = ∅ so we assume that x0 ∈ int dom f . Then
there exists δ > 0 such that x0 + δBX ⊆ dom f . By sublinearity, ∀y ∈ dom f , we have
y + x0 + δBX ⊆ dom f . Hence

y + x0 ∈ int dom f.

Then dom f + int dom f ⊆ int dom f . Since 0 ∈ dom f , int dom f ⊆ dom f + int dom f .
Hence dom f + int dom f = int dom f . �

Lemma 2.9 Let A : X ⇒ X∗ be a maximal monotone linear relation, and let z ∈ X∩(A0)⊥.
Then z ∈ domA.
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Proof. Suppose to the contrary that z /∈ domA. Then the Separation Theorem provides
w∗ ∈ X∗ such that

〈z, w∗〉 > 0 and w∗ ∈ domA
⊥
.(8)

Thus, (0, w∗) is monotonically related to graA. Since A is maximal monotone, we deduce
that w∗ ∈ A0. By assumption, 〈z, w∗〉 = 0, which contradicts (8). Hence, z ∈ domA. �

The proof of the next result follows closely the proof of [19, Theorem 53.1].

Lemma 2.10 Let A : X ⇒ X∗ be a monotone linear relation, and let f : X → ]−∞,+∞]
be a proper lower semicontinuous convex function. Suppose that domA ∩ int dom ∂f 6= ∅,
(z, z∗) ∈ X × X∗ is monotonically related to gra(A + ∂f), and that z ∈ domA. Then
z ∈ dom ∂f .

Proof. Let c0 ∈ X and y∗ ∈ X∗ be such that

c0 ∈ domA ∩ int dom ∂f and (z, y∗) ∈ graA.(9)

Take c∗0 ∈ Ac0, and set

M := max
{
‖y∗‖, ‖c∗0‖

}
,(10)

D := [c0, z], and h := f + ιD. By (9), Fact 2.7 and Fact 2.1, ∂h = ∂f + ∂ιD. Set
H : X → ]−∞,+∞] : x 7→ h(x+ z)− 〈z∗, x〉. It remains to show that

0 ∈ dom ∂H.(11)

If inf H = H(0), then (11) holds. Now suppose that inf H < H(0). Let λ ∈ R be such that
inf H < λ < H(0), and set

Kλ := sup
H(x)<λ

λ−H(x)

‖x‖
.(12)

We claim that

Kλ ≤M.

By Fact 2.5, we have Kλ ∈ ]0,∞[ and ∀ε ∈ ]0, 1[, by gra ∂H = gra ∂h − (z, z∗) there exists
(x, x∗) ∈ gra ∂h such that

〈x− z, x∗ − z∗〉 ≤ −(1− ε)Kλ‖x− z‖ < 0.(13)

Since ∂h = ∂f + ∂ιD, there exists t ∈ [0, 1] with x∗1 ∈ ∂f(x) and x∗2 ∈ ∂ιD(x) such that
x = tc0 + (1− t)z and x∗ = x∗1 + x∗2. Then 〈x− z, x∗2〉 ≥ 0. Thus, by (13),

〈x− z, x∗1 − z∗〉 ≤ 〈x− z, x∗1 + x∗2 − z∗〉 ≤ −(1− ε)Kλ‖x− z‖ < 0.(14)
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As x = tc0 + (1 − t)z and A is a linear relation, we have (x, tc∗0 + (1 − t)y∗) ∈ graA. Since
(z, z∗) is monotonically related to gra(A+ ∂f), by (10),

〈x− z, x∗1 − z∗〉 ≥ −〈x− z, tc∗0 + (1− t)y∗〉 ≥ −M‖x− z‖.(15)

Combining (15) and (14), we obtain

−M‖x− z‖ ≤ −(1− ε)Kλ‖x− z‖ < 0.(16)

Hence, (1− ε)Kλ ≤ M . Letting ε ↓ 0, we deduce that Kλ ≤ M . Then, by (12) and letting
λ ↑ H(0), we get

H(y) +M‖y‖ ≥ H(0), ∀y ∈ X.(17)

By [19, Example 7.1], 0 ∈ dom ∂H. Hence (11) holds and thus z ∈ dom ∂f . �

3 Main Result

Theorem 3.1 Let A : X ⇒ X∗ be a maximal monotone linear relation, let f : X →
]−∞,+∞] be a proper lower semicontinuous sublinear function, and suppose that domA ∩
int dom ∂f 6= ∅. Then A+ ∂f is maximal monotone.

Proof. Let (z, z∗) ∈ X ×X∗ and suppose that

(18) (z, z∗) is monotonically related to gra(A+ ∂f).

By Fact 2.2, domA ⊆ PX(domFA) and dom ∂f ⊆ PX(domF∂f ). Hence,⋃
λ>0

λ
(
PX(domFA)− PX(domF∂f )

)
= X.(19)

Thus, by Fact 2.3, it suffices to show that

(20) z ∈ domA ∩ dom ∂f.

We have

〈z, z∗〉 − 〈z, x∗〉 − 〈x, z∗〉+ 〈x, x∗〉+ 〈x− z, y∗〉
= 〈z − x, z∗ − x∗ − y∗〉 ≥ 0, ∀(x, x∗) ∈ graA, (x, y∗) ∈ gra ∂f.(21)

By Fact 2.6(ii), ∂f(0) 6= ∅. By (21),

inf [〈z, z∗〉 − 〈z, A0〉 − 〈z, ∂f(0)〉] = inf
a∗∈A0,b∗∈∂f(0)

[〈z, z∗〉 − 〈z, a∗〉 − 〈z, b∗〉] ≥ 0.
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Thus, because A0 is a linear subspace,

z ∈ X ∩ (A0)⊥.(22)

Then, by Fact 2.6(iii),

〈z, z∗〉 ≥ f(z).

Thus,

z ∈ dom f.(23)

By (22) and Lemma 2.9, we have

z ∈ domA.(24)

By Fact 2.6(i), y∗ ∈ ∂f(0) as y∗ ∈ ∂f(x). Then 〈x− z, y∗〉 ≤ f(x− z), ∀y∗ ∈ ∂f(x). Thus,
by (21), we have

〈z, z∗〉 − 〈z, x∗〉 − 〈x, z∗〉+ 〈x, x∗〉+ f(x− z) ≥ 0, ∀(x, x∗) ∈ graA, x ∈ dom ∂f.(25)

Let C := int dom f . Then by Fact 2.7, we have

〈z, z∗〉 − 〈z, x∗〉 − 〈x, z∗〉+ 〈x, x∗〉+ f(x− z) ≥ 0, ∀(x, x∗) ∈ graA, x ∈ C.(26)

Set j := (f(· − z) + ιC)⊕ ιX∗ and

(27) g : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ 〈x, x∗〉+ ιgraA(x, x∗).

By Fact 2.4, g is convex. Hence,

(28) h := g + j

is convex as well. Let

(29) c0 ∈ domA ∩ C.

By Lemma 2.8 and (23), z+c0 ∈ int dom f . Then there exists δ > 0 such that z+c0+δBX ⊆
dom f and c0 + δBX ⊆ dom f . By (24), z + c0 ∈ domA since domA is a linear subspace.
Thus there exists b ∈ 1

2
δBX such that z+ c0 + b ∈ domA∩ int dom f . Let v∗ ∈ A(z+ c0 + b).

Since c0 + b ∈ int dom f ,

(z + c0 + b, v∗) ∈ graA ∩
(

intC ∩ int dom f(· − z)×X∗
)

= dom g ∩ int dom j 6= ∅.(30)
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By Fact 2.7 (applied to f) and Fact 2.1 (applied to g and j), there exists (y∗, y∗∗) ∈ X∗×X∗∗
such that

h∗(z∗, z) = g∗(y∗, y∗∗) + j∗(z∗ − y∗, z − y∗∗)
= g∗(y∗, y∗∗) + ι{0}(z − y∗∗) + sup

x∈C
[〈x, z∗ − y∗〉 − f(x− z)]

≥ g∗(y∗, y∗∗) + ι{0}(z − y∗∗) + sup
x∈z+C

[〈x, z∗ − y∗〉 − f(x− z)] (by Lemma 2.8 and (23))

= g∗(y∗, y∗∗) + ι{0}(z − y∗∗) + 〈z, z∗ − y∗〉+ sup
y∈C

[〈y, z∗ − y∗〉 − f(y)]

= g∗(y∗, y∗∗) + ι{0}(z − y∗∗) + 〈z, z∗ − y∗〉+ sup
{y∈C,k>0}

[〈ky, z∗ − y∗〉 − f(ky)]

= g∗(y∗, y∗∗) + ι{0}(z − y∗∗) + 〈z, z∗ − y∗〉+ sup
{y∈C,k>0}

k [〈y, z∗ − y∗〉 − f(y)]

≥ g∗(y∗, y∗∗) + ι{0}(z − y∗∗) + 〈z, z∗ − y∗〉.
(31)

By (26), we have, for every (x, x∗) ∈ graA∩ (C×X∗), 〈(x, x∗), (z∗, z)〉−h(x, x∗) = 〈x, z∗〉+
〈z, x∗〉 − 〈x, x∗〉 − f(x− z) ≤ 〈z, z∗〉. Consequently,

(32) h∗(z∗, z) ≤ 〈z, z∗〉.

Combining (31) with (32), we obtain

(33) g∗(y∗, y∗∗) + 〈z, z∗ − y∗〉+ ι{0}(z − y∗∗) ≤ 〈z, z∗〉.

Therefore, y∗∗ = z. Hence g∗(y∗, z) + 〈z, z∗ − y∗〉 ≤ 〈z, z∗〉. Since g∗(y∗, z) = FA(z, y∗), we
deduce that FA(z, y∗) ≤ 〈z, y∗〉. By Fact 2.2,

(34) (z, y∗) ∈ graA

Hence

z ∈ domA.

Apply Lemma 2.10 to obtain z ∈ dom ∂f . Then z ∈ domA ∩ dom ∂f . Hence A + B is
maximal monotone. �

Example 3.2 Suppose that X = L1[0, 1], let

D =
{
x ∈ X | x is absolutely continuous, x(0) = 0, x′ ∈ X∗

}
,

and set

A : X ⇒ X∗ : x 7→

{
{x′}, if x ∈ D;

∅, otherwise.

By Phelps and Simons’ [14, Example 4.3], A is an at most single-valued maximal monotone
linear relation with proper dense domain, and A is neither symmetric nor skew. Now set
f = ‖ · ‖. Then Theorem 3.1 implies that A+ ∂f is maximal monotone.
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Remark 3.3 To the best of our knowledge, the maximal monotonicity of A + ∂f in Ex-
ample 3.2 cannot be deduced from any known result different from Theorem 3.1. Perhaps
the closest related result is due to Verona and Verona (see [22, Corollary 2.9(a)] or [19,
Theorem 53.1]) who showed the following: “Let f : X → ]−∞,+∞] be proper, lower semi-
continuous, and convex, let A : X ⇒ X∗ be maximal monotone, and suppose that dom
A = X. Then ∂f + A is maximal monotone.” Note that Theorem 3.1 cannot be deduced
from this result because A need not have full domain as in Example 3.2.
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