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Summary: The demiclosedness principle is one of the key tools in nonlinear anal-
ysis and fixed point theory. In this note, this principle is extended and made more
flexible by two mutually orthogonal affine subspaces. Versions for finitely many
(firmly) nonexpansive operators are presented. As an application, a simple proof of
the weak convergence of the Douglas-Rachford splitting algorithm is provided.
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2.1 Introduction

Throughout this paper, we assume that

X is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ ·‖. (2.1)

We shall assume basic notation and results from Fixed Point Theory and from
Monotone Operator Theory; see, e.g., [2, 4, 8, 15, 16, 20, 21, 22, 24]. The graph

of a maximally monotone operator A : X ⇒ X is denoted by graA, its resolvent

(A+ Id)−1 by JA, its set of zeros by zerA = A−1(0), and we set RA = 2JA− Id,
where Id is the identity operator. Weak convergence is indicated by ⇀ .

Let T : X → X . Recall that T is firmly nonexpansive if

(∀x ∈ X)(∀y ∈ X) ‖T x−Ty‖2+ ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2. (2.2)
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It is well know that T is firmly nonexpansive if and only if R = 2T − Id is nonex-

pansive, i.e.,
(∀x ∈ X)(∀y ∈ X) ‖Rx−Ry‖ ≤ ‖x− y‖. (2.3)

Clearly, every firmly nonexpansive operator is nonexpansive. Building on work by
Minty [19], Eckstein and Bertsekas [13] clearly linked firmly nonexpansive map-
pings to maximally monotone operators—the key result is the following: T is
firmly nonexpansive if and only if T = JA for some maximally monotone opera-
tor A (namely, T−1− Id). This implies also a correspondence between maximally
monotone operators and nonexpansive mappings (see [14] and [17]). Thus, finding
a zero of A is equivalent to finding a fixed point of JA. Furthermore, the graph of
any maximally monotone operator is beautifully described by the associated Minty

parametrization:
graA =

{
(JAx,x− JAx) | x ∈ X

}
. (2.4)

The most prominent example of firmly nonexpansive mappings are projectors, i.e.,
resolvents of normal cone operators associated with nonempty closed convex sub-
sets of X . Despite being (firmly) nonexpansive and hence Lipschitz continuous,
even projectors do not interact well with the weak topology as was first observed
by Zarantonello [25]:

Example 2.1. Suppose that X = "2(N), set C =
{

x ∈ X | ‖x‖ ≤ 1
}

, and denote the
sequence of standard unit vectors in X by (en)n∈N. Set (∀n ∈N) zn = e0 + en. Then

zn ⇀ e0 yet PCzn ⇀ 1√
2
e0 *= e0 = PCe0. (2.5)

The following classical demiclosedness principle dates back to the 1960s and
work by Browder [6]. It comes somewhat as a surprise in view of the previous
example.

Fact 2.2 (Demiclosedness Principle). Let S be a nonempty closed convex subset of
X , let T : S→ X be nonexpansive, let (zn)n∈N be a sequence in S converging weakly
to z, and suppose that zn−Tzn→ x. Then z−Tz = x.

Remark 2.3. One might inquire whether or not the following even less restrictive
demiclosedness principle holds:

zn ⇀ z

zn−Tzn ⇀ x

}
?⇒ z−Tz = x. (2.6)

However, this is generalization is false: indeed, suppose that X , C, and (zn)n∈N are
as in Example 2.1, and set T = Id−PC, which is (even firmly) nonexpansive. Then
zn ⇀ e0 and zn−Tzn = PCzn ⇀ 1√

2
e0 yet e0−Te0 = PCe0 = e0 *= 1√

2
e0.

The aim of this note is to provide new versions of the demiclosedness principle
and illustrate their usefulness. The remainder of this paper is organized as follows.
Section 2.2 presents new demiclosedness principles for one (firmly) nonexpansive
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operator. Multi-operator versions are provided in Section 2.3. The weak conver-
gence of the Douglas-Rachford algorithm is rederived with a very transparent proof
in Section 2.4.

2.2 Demiclosedness Principles

Fact 2.4 (Brezis). (See [5, Proposition 2.5 on page 27], [23, Lemma 4], or [2, Corol-
lary 20.49].) Let A : X ⇒ X be maximally monotone, let (x,u) ∈ graA, and let
(xn,un)n∈N be a sequence in X ×X such that (xn,un) ⇀ (x,u) and lim〈xn,un〉 ≤
〈x,u〉. Then 〈xn,un〉 → 〈x,u〉 and (x,u) ∈ graA.

Theorem 2.5. (See also [2, Proposition 20.50].) Let A : X ⇒X be maximally mono-
tone, let (x,u) ∈ X ×X , and let C and D be closed affine subspaces of X such that
D−D = (C−C)⊥. Furthermore, let (xn,un)n∈N be a sequence in graA such that

(xn,un) ⇀ (x,u) and (xn,un)−PC×D(xn,un)→ (0,0). (2.7)

Then (x,u) ∈ (C×D)∩graA and 〈xn,un〉 → 〈x,u〉.

Proof. Set V = C−C, which is a closed linear subspace. Since xn−PCxn → 0, we
have PCxn ⇀ x and thus x ∈C. Likewise, u ∈ D and hence

C = x+V and D = u+V⊥. (2.8)

It follows that

PC : z /→ PV z+PV⊥x and PD : z /→ PV⊥z+PV u. (2.9)

Therefore, since PV and PV⊥ are weakly continuous,

〈xn,un〉= 〈PV xn +PV⊥xn,PV un +PV⊥un〉 (2.10a)

= 〈PV xn,PV un〉+ 〈PV⊥xn,PV⊥un〉 (2.10b)

= 〈PV xn,un−PV⊥un〉+ 〈xn−PV xn,PV⊥un〉 (2.10c)

= 〈PV xn,un− (PDun−PV u)〉 (2.10d)

+ 〈xn− (PCxn−PV⊥x),PV⊥un〉 (2.10e)

= 〈PV xn,un−PDun〉+ 〈PV xn,PV u〉 (2.10f)

+ 〈xn−PCxn,PV⊥un〉+ 〈PV⊥x,PV⊥un〉 (2.10g)

→ 〈PV x,PV u〉+ 〈PV⊥x,PV⊥u〉 (2.10h)

= 〈x,u〉. (2.10i)

The result now follows from Fact 2.4. "

Remark 2.6. Theorem 2.5 generalizes [1, Theorem 2], which corresponds to the
case when C is a closed linear subspace and D = C⊥. A referee pointed out that
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Theorem 2.5 may be obtained from [1, Theorem 2] by a translation argument. How-
ever, the above proof of Theorem 2.5 is different and much simpler than the proof
of [1, Theorem 2].

Corollary 2.7 (firm nonexpansiveness principle). Let F : X → X be firmly non-
expansive, let (zn)n∈N be a sequence in X such that (zn)n∈N converges weakly to
z ∈ X , suppose that Fzn ⇀ x ∈ X , and that C and D are closed affine subspaces of
X such that D−D = (C−C)⊥, Fzn−PCFzn→ 0, (zn−Fzn)−PD(zn−Fzn)→ 0.
Then x ∈C, z ∈ x+D, and x = Fz.

Proof. Set A = F−1− Id so that JA = F . By (2.4), A is maximally monotone and

(xn,un)n∈N := (Fzn,zn−Fzn)n∈N (2.11)

is a sequence in graA that converges weakly to (x,z− x). Thus, by Theorem 2.5,
x ∈C, z− x ∈ D, and z− x ∈ Ax. Therefore, z ∈ x+Ax, i.e., x = JAz = Fz. "

Corollary 2.8 (nonexpansiveness principle). Let T : X → X be nonexpansive, let
(zn)n∈N be a sequence in X such that zn ⇀ z, suppose that Tzn ⇀ y, and that C and
D are closed affine subspaces of X such that D−D = (C−C)⊥, zn +Tzn−PCzn−
PCTzn→ 0, and zn−Tzn−PDzn−PD(−Tzn)→ 0. Then 1

2 z+ 1
2 y ∈C, 1

2 z− 1
2 y ∈D,

and y = T z.

Proof. Set F = 1
2 Id+ 1

2 T , which is firmly nonexpansive. Then Fzn ⇀ 1
2 z+ 1

2 y =: x.
Since PC is affine, we get

zn +Tzn−PCzn−PCT zn→ 0 (2.12a)

⇔ zn +Tzn− 2
(

1
2 PCzn +

1
2 PCT zn

)
→ 0 (2.12b)

⇔ zn +Tzn− 2PC

(
1
2 zn +

1
2 T zn

)
→ 0 (2.12c)

⇔ 2Fzn− 2PCFzn→ 0 (2.12d)

⇔ Fzn−PCFzn→ 0. (2.12e)

Likewise, since zn−Fzn = zn− 1
2 zn− 1

2 T zn =
1
2 zn− 1

2 T zn, we have

zn−Tzn−PDzn−PD(−Tzn)→ 0 (2.13a)

⇔ zn−Tzn− 2
(

1
2 PDzn +

1
2 PD(−T zn)

)
→ 0 (2.13b)

⇔ 2(zn−Fzn)− 2PD

(
1
2 zn + 1

2 (−Tzn)
)
→ 0 (2.13c)

⇔ zn−Fzn−PD(zn−Fzn)→ 0. (2.13d)

Thus, by Corollary 2.7, x∈C, z∈ x+D, and x = Fz, i.e., 1
2 z+ 1

2 y∈C, z∈ 1
2 z+ 1

2 y+

D, and 1
2 z+ 1

2 y = Fz = 1
2 z+ 1

2 T z, i.e., 1
2 z+ 1

2 y ∈C, 1
2 z− 1

2 y ∈ D, and y = T z. "

Corollary 2.9 (classical demiclosedness principle). Let S be a nonempty closed
convex subset of X , let T : S→ X be nonexpansive, let (zn)n∈N be a sequence in S

converging weakly to z, and suppose that zn−Tzn→ x. Then z−Tz = x.
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Proof. We may and do assume that S = X (otherwise, consider T ◦ PS instead of
T ). Set y = z− x and note that T zn ⇀ y. Now set C = X and D = {x/2}. Then
D−D = {0} = X⊥ = (X − X)⊥ = (D−D)⊥, zn + Tzn − PCzn − PCT zn ≡ 0 and
zn − T zn− PDzn − PD(−Tzn) = zn − T zn − x/2− x/2→ 0. Corollary 2.8 implies
y = T z, i.e., z− x = T z. "

2.3 Multi-Operator Demiclosedness Principles

Set

I = {1,2, . . . ,m}, where m is an integer greater than or equal to 2. (2.14)

We shall work in the product Hilbert space

X = XI (2.15)

with induced inner product 〈x,y〉 =
∑

i∈I〈xi,yi〉 and ‖x‖ =
√∑

i∈I ‖xi‖2, where
x = (xi)i∈I and y = (yi)i∈I denote generic elements in X.

We start with a multi-operator demiclosedness principle for firmly nonexpansive
mappings, which we derive from the corresponding two-operator version (Corol-
lary 2.7). A referee pointed out that Theorem 2.10 is also equivalent to [1, Corol-
lary 3] (see also [23, Lemma 5] for a Banach space extension of [1, Corollary 3]).

Theorem 2.10 (Multi-Operator Demiclosedness Principle for Firmly Nonex-
pansive Operators). Let (Fi)i∈I be a family of firmly nonexpansive operators on
X , and let, for each i ∈ I, (zi,n)n∈N be a sequence in X such that for all i and j in I,

zi,n ⇀ zi and Fizi,n ⇀ x (2.16a)
∑

i∈I

(zi,n−Fizi,n)→−mx+
∑

i∈I

zi (2.16b)

Fizi,n−Fjz j,n→ 0. (2.16c)

Then Fizi = x, for every i ∈ I.

Proof. Set x = (x)i∈I , z = (zi)i∈I , (zn) = (zi,n)n∈N, and C =
{
(y)i∈I | y ∈ X

}
. Then

zn ⇀ z and C is a closed subspace of X with C⊥ =
{
(yi)i∈I |

∑
i∈I yi = 0

}
. Fur-

thermore, we set D = z− x + C⊥ so that (C−C)⊥ = C⊥ = D−D, and also
F : (yi)i∈I /→ (Fyi)i∈I . Then F is firmly nonexpansive on X, and Fzn ⇀ x. Now
(2.16c) implies

(∀i ∈ I) Fizi,n−
1

m

∑

j∈I

Fjz j,n→ 0, (2.17)

which—when viewed in X—means that Fzn−PCFzn→ 0. Similarly, using (2.16b),

zn−Fzn−PD(zn−Fzn) = zn−Fzn−Pz−x+C⊥(zn−Fzn) (2.18a)
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= zn−Fzn−
(
z− x+PC⊥

(
zn−Fzn− (z− x)

))
(2.18b)

=
(

Id−PC⊥
)
(zn−Fzn)−

(
Id−PC⊥

)
(z− x) (2.18c)

= PC(zn−Fzn)−PC(z− x) (2.18d)

=
(

1
m

∑

i∈I

(
zi,n−Fizi,n− zi + x

))

j∈I
(2.18e)

→ 0. (2.18f)

Therefore, by Corollary 2.7, x = Fz. "

Theorem 2.11 (Multi-Operator Demiclosedness Principle for Nonexpansive Op-
erators). Let (Ti)i∈I be a family of nonexpansive operators on X , and let, for each
i ∈ I, (xi,n)n∈N be a sequence in X such that for all i and j in I,

zi,n ⇀ zi and Tizi,n ⇀ yi (2.19a)
∑

i∈I

(
zi,n−Tizi,n

)
→
∑

i∈I

(
zi− yi

)
(2.19b)

zi,n− z j,n +Tizi,n−Tjz j,n→ 0. (2.19c)

Then Tizi = yi, for each i ∈ I.

Proof. Set (∀i ∈ I) Fi = 1
2 Id+ 1

2 Ti. Then Fi is firmly nonexpansive and Fizi,n ⇀
1
2 zi + 1

2 yi, for every i ∈ I. By (2.19c), 0← 2Fizi,n− 2Fjz j,n = (zi,n +Tizi,n)− (z j,n +

Tjz j,n) ⇀ (zi + yi)− (z j + y j), for all i and j in I. It follows that x = 1
2 zi +

1
2 yi is

independent of i ∈ I. Furthermore,

∑

i∈I

(
zi,n−Fizi,n

)
=
∑

i∈I

1
2

(
zi,n−Tizi,n

)
(2.20a)

→
∑

i∈I

1
2

(
zi− yi

)
(2.20b)

=
∑

i∈I

(
1
2 zi−

(
x− 1

2 zi

))
(2.20c)

=−mx+
∑

i∈I

zi. (2.20d)

Therefore, the conclusion follows from Theorem 2.10. "

2.4 Application to Douglas-Rachford splitting

In this section, we assume that A and B are maximally monotone operators on X

such that
zer(A+B) = (A+B)−1(0) *=∅. (2.21)

We set
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T = 1
2 Id+ 1

2 RBRA = JB(2JA− Id)+ (Id−JA), (2.22)

which is the Douglas-Rachford splitting operator and where RA = 2JA − Id and
RB = 2JB− Id are the “reflected resolvents” already considered in Section 2.1. (The
term “reflected resolvent” is motivated by the fact that when JA is a projection op-
erator, then RA is the corresponding reflection.) See [2], [10] and [11] for further
information on this algorithm; and also [3] for some results for operators that are not
maximally monotone. One has (see [10, Lemma 2.6(iii)] or [2, Proposition 25.1(ii)])

JA

(
FixT

)
= zer(A+B). (2.23)

Now let z0 ∈ X and define the sequence (zn)n∈N by

(∀n ∈N) zn+1 = Tzn. (2.24)

This sequence is very useful in determining a zero of A+B as the next result illus-
trates.

Fact 2.12 (Lions-Mercier). [18] The sequence (zn)n∈N converges weakly to some
point z ∈ X such that z ∈ FixT and JAz ∈ zer(A + B). Moreover, the sequence
(JAzn)n∈N is bounded, and every weak cluster point of this sequence belongs to
zer(A+B).

Since JA is in general not sequentially weakly continuous (see Example 2.1), it is
not obvious whether or not JAzn ⇀ JAz. However, recently Svaiter provided a rela-
tively complicated proof that in fact weak convergence does hold. As an application,
we rederive the most fundamental instance of his result with a considerably simpler
and more conceptual proof.

Fact 2.13 (Svaiter). [23] The sequence (JAzn)n∈N converges weakly to JAz.

Proof. By Fact 2.12,
zn ⇀ z ∈ FixT. (2.25)

Since JA is (firmly) nonexpansive and (zn)n∈N is bounded, the sequence (JAzn)n∈N
is bounded as well. Let x be an arbitrary weak cluster point of (JAzn)n∈N, say

JAzkn ⇀ x ∈ zer(A+B) (2.26)

by Fact 2.12. Set (∀n ∈ N) yn = RAzn. Then

ykn ⇀ y = 2x− z ∈ X . (2.27)

Since the operator T is firmly nonexpansive and FixT *=∅, it follows from [7] that
zn−Tzn→ 0 (i.e., T is “asymptotically regular”); thus,

JAzn− JByn = zn−Tzn→ 0 (2.28)

and hence
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JBykn ⇀ x. (2.29)

Next,

0← JAzkn − JBykn (2.30a)

= zkn − JAzkn +RAzkn − JBykn (2.30b)

= zkn − JAzkn + ykn− JBykn (2.30c)

⇀ z+ y− 2x. (2.30d)

To summarize,

(zkn ,ykn) ⇀ (z,y) and (JAzkn ,JBykn) ⇀ (x,x), (2.31a)

(zkn − JAzkn)+ (ykn− JBykn)→−2x+ z+ y= 0, (2.31b)

JAzkn − JBykn → 0. (2.31c)

By Theorem 2.10, JAz = JBy = x. Hence JAzkn ⇀ JAz. Since x was an arbitrary weak
cluster point of the bounded sequence (JAzn)n∈N, we conclude that JAzn ⇀ JAz. "

Motivated by a referee’s comment, let us turn towards inexact iterations of T .
The following result underlines the usefulness of the multi-operator demiclosedness
principle.

Theorem 2.14. Suppose that (zn)n∈N is a sequence in X such that zn−Tzn→ 0 and
zn ⇀ z, where z ∈ FixT . Then JAzn ⇀ JAz.

Proof. Argue exactly as in the proof of Fact 2.13. "

We now present a prototypical result on inexact iterations; see [9], [10], [11],
[13], and [23] for many more results in this direction as well as [2] and also [12].

Corollary 2.15. Suppose that (zn)n∈N and (en)n∈N are sequences in X such that

∑

n∈N
‖en‖<+∞ and (∀n ∈ N) zn+1 = en +Tzn. (2.32)

Then there exists z ∈ FixT such that zn ⇀ z and JAzn ⇀ JAz.

Proof. Combettes’ [9, Proposition 4.2(ii)] yields zn−Tzn → 0 while the existence
of z ∈ FixT such that zn ⇀ z is guaranteed by his [9, Theorem 5.2(i)]. Now apply
Theorem 2.14. "

Unfortunately, the author is unaware of any existing actual numerical implemen-
tation guaranteeing summable errors; however, these theoretical results certainly
increase confidence in the numerical stability of the Douglas-Rachford algorithm.
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