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Chaotic Dynamics Can Select for Long-Term Dormancy*
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abstract: Extended dormancy in a population is evolutionarily
costly unless some variance in season-to-season fitness (usually
driven by variance in environmental quality) makes bet hedging
useful. Consequently, dormancy in a population is usually accepted
as evidence of environmental variance. Using a Ricker-type model
with heritable variation in dormancy, we show that this need not be
so. Intrinsic population dynamics can generate chaotic fluctuations
in the absence of environmental variance. Chaotic dynamics increase
the frequency of a range of dormant strategists under natural selec-
tion, even when mortality during dormancy is relatively high. The
buffering effect of dormant individuals then eliminates chaotic dy-
namics or generates periodic orbits of relatively low amplitude. These
stabilized populations harbor a high frequency of dormant individ-
uals that express a range of propensities to enter dormancy.

Keywords: chaos, diapause, dormancy, risk spreading, demographic,
bet hedging.

Paradoxes are common in biology. For example, many
organisms, such as plants and insects, commonly exhibit
long-distance dispersal or dormancy extending for many
generations (Hanski 1988). Such strategies are problematic
because direct fecundity costs associated with dispersal and
the demographic costs incurred by delaying reproduction
result in reduction of fitness. Although dispersal and dor-
mancy allow organisms to hedge against highly variable
environments (Denno et al. 1991; Holt and McPeek 1996)
or temporally variable mortality resulting from predation
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(Ringel et al. 1998), these tactics can also persist in situ-
ations where no variance source is apparent (Denno et al.
1991; Aluja et al. 1998). When the latter is true, it is usual
to assume selection from some unmeasured environmental
variance-driving factor (Danks 1992; Hopper 1999). A sec-
ond paradox is that internally generated chaotic dynamics
are a feature of many ecological models (Hassell et al. 1976;
May 1976), but such dynamics have rarely been demon-
strated in nature (Hassell et al. 1976; Turchin and Ellner
2000). It is usual to ascribe this absence of evidence to
the difficulties associated with separating the effects of
intrinsic and extrinsic factors on population dynamics
(Turchin and Ellner 2000).

We describe here a scenario where natural selection in
chaotic populations favors the spread of a demographically
costly risk-spreading strategy. In this case, we model dor-
mancy evolution, but our results are broadly applicable to
dispersal as well. Although it is well known that dormant
(or dispersing) individuals can stabilize population dynam-
ics (Bulmer 1984; Van Dooren and Metz 1998; Newman et
al. 2002), it is not known whether dormancy can evolve in
a chaotic population, given its demographic cost. We dem-
onstrate here that allowing natural selection for dormancy
generates very stable dynamics in otherwise chaotic systems
while maintaining a high frequency of dormant strategists.

The Model

We begin with a population constrained to a single strategy
of nondormancy whose dynamics are described by the
familiar Ricker (1954) equation (using the discrete-time
logistic produces identical qualitative results; May 1976),

�dNtN p RN e , (1)t�1 t

where the population at one time step in the future,
, is a function of the replacement rate (R) and theNt�1

negative influence (competition, cannibalism) of the pre-
sent population (�dNt). This model has the useful char-
acteristic of displaying dynamics that range from extreme
stability at low values of R to a series of period-doubling
bifurcations leading to chaos as R increases (fig. 1).

We modify this basic model to include dormancy, where
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Figure 1: Ricker population dynamics. Bifurcation plot shows the effect
of changing the replacement rate (R) on population stability in Ricker-
type populations with no dormancy.

a parent’s offspring show a range of dormancies with a mean
that we allowed to range from zero to five generations.
Actual dormancies across individuals are assigned according
to a Poisson distribution, to a maximum of 13 generations
of dormancy, with the very small fraction of dormancies
that would have been assigned values greater than the max-
imum set to that maximum value. The population of active
individuals at time , , is now given byt � 1 Nt�1

�

�dNtN p RN e (p ) � d (1 � m). (2)[ ]�t�1 t 0j 1t
jp0

Here, p0j is the proportion of the population that is com-
posed of individuals of genotype j that express no dor-
mancy, and is the element of vector d that containsd1t

the number of individuals at time t that have broken dor-
mancy at time and have escaped density-independentt � 1
mortality (m). Additionally, all individuals in the dor-
mancy vector d that survive one season of dormancy are
moved to the next lowest element (e.g., d5 to d4) each
generation. Finally, each element of d at time t is also
updated by direct recruitment of the dormant offspring
of active individuals of genotype j. Thus,

�

�dNtd p RN e (p ) � d (1 � m). (3)[ ]�i t ij i�1t t�1
jp0

One convenient aspect of this approach is that it allowed
us to assign dormancy “fates” directly to individuals such
that the duration of each individual’s term of dormancy
was defined at birth to be of a specific duration. This avoids
problems associated with simply assigning Markov prob-
abilities to the processes of entering and leaving the dor-
mant pool. The latter approach makes for analytically trac-
table models. However, in numerical models, this practice
has the effect of creating individuals that can experience
very long dormancies because the likelihood that any in-

dividual in the dormant pool will ultimately break dor-
mancy is independent of the length of time that the in-
dividual has been dormant.

Sensitivity Analyses for Evolving Dormancy

We started our population with no dormant strategists and
allowed dormancy to appear by mutation after 1,900 gen-
erations and for the next 100 generations. To do this, we
introduced a mutation rate of 0.002/individual that could
result in a spontaneous change in the maternal strategy
with respect to dormancy. Depending on the magnitude
of the replacement rate (R), this meant that over 100 gen-
erations, anywhere from 200 to 2,000 mutants were in-
troduced into the population. Natural populations with
dormancy typically express a range of dormancy durations
(Menu et al. 2000). We assume here that this variation is
a genotypic strategy, and we have all mutant strategists
play a mixed game wherein progeny display a range of
dormancies with a genotypically specific mean value rather
than a dormancy of fixed duration.

For computational purposes, we discretized this range
into value increments of 0.5. When a mutation occurred,
the offspring of the individual with the mutation all carried
the same resulting genotype (asexual inheritance). After
the population was seeded with dormant strategists, mu-
tation was terminated, and the model population was al-
lowed to evolve for a further 3,000 generations. At the end
of this time, the population size during the last 50 gen-
erations was recorded, along with the distribution of strat-
egists within the population. All combinations of param-
eters were replicated 10 times.

The model setup did not lend itself to classical analysis
for determining evolutionary stable states. However, we
did test the robustness of our results by a perturbation
analysis as a complement to each of the replicate runs
described above. Our results below are robust with respect
to variation in the density-dependent mortality term (d)
in the Ricker model.

Our model produces several striking results. First, the
unstable dynamics displayed by the original Ricker model
essentially disappear with the invasion of dormancy. Pa-
rameter combinations that would otherwise produce a pe-
riod doubling to chaos (fig. 1; Hassell et al. 1976; Newman
et al. 2002) instead produce stable equilibria, simple two-
phase cycles, or periodic orbits of relatively narrow am-
plitude (fig. 2). Second, we find that populations support
dormant strategists above the threshold replacement rate
that would normally see the beginning of the period-
doubling process in the unmodified Ricker model. Most
interestingly, we see that a range of dormancy strategies,
rather than a single “optimal” dormancy strategy, is main-
tained (fig. 3). This effect is most pronounced at zero or
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Figure 2: Dynamics of Ricker systems with dormancy allowed to invade. Plots show the effect of increasing mortality (m) during dormancy on
system dynamics. Active individuals (Y-axis) are those individuals in the population that are not dormant at any given time; they may be either
nondormant or dormant strategists.

low mortality levels and is much less evident with strong
mortality during the dormant phase (fig. 3). This pro-
duction of a range of dormancy strategies is robust in a
qualitative way. Replicate runs produce similar but slightly
different ranges of dormancy strategies under identical pa-
rameters and show a strong tendency to return to similar
states after perturbation (results not shown). Finally, we
find that higher replacement rates tend to increase pop-
ulation fluctuations, in this case manifested by the system
entering periodic orbits of increasing amplitude. These
orbits are driven by temporal fluctuation of strategist fre-
quencies, in a manner similar to that of Doebeli’s (1993,
1995) intermittent chaos and laboratory predator-prey sys-
tems (Yoshida et al. 2003).

The first two results, system stability and invasion and
maintenance of dormancy, compare very closely with find-
ings of other studies on the evolution of demographically
costly strategies. It has been amply demonstrated, at least
theoretically, that dispersal and dormancy can be main-
tained in variable environments (e.g., Hopper 1999). For
example, Menu et al. (2000) showed that a pure risk-
spreading strategy can, despite its demographic cost, per-
form very well when environmentally determined mor-
tality varies greatly over time. Furthermore, Doebeli (1995)
demonstrated that chaotic dynamics can be ameliorated
by introduction of demographically costly strategies, al-
though he did not invoke specific biological mechanisms.
In a similar way, Newman et al. (2002) showed that a
dormant pool can stabilize Ricker-type dynamics over a
range of parameters, but they did not evaluate the fitness
of dormant strategies. Finally, Holt and McPeek (1996)
showed that dispersal strategies are favored under natural

selection in chaotic systems, which in turn affect system
dynamics.

Maintenance of a range of genotypes within a model
system suggests that there is no unique evolutionarily sta-
ble strategy (ESS) for many sets of parameters. This type
of result can be obtained in randomly fluctuating (Sasaki
and Ellner 1995) or cyclical systems where strategists differ
markedly in functional response to resource availability
(Armstrong and McGehee 1976; Abrams and Holt 2002).
However, our model includes none of these features. In-
stead, we see a mixture of dormancy strategy “genotypes”
under parameter sets that ultimately result in strong pop-
ulation stability once dormancy invades (fig. 2). This result
may have been obtained when mortality during dormancy
was set to zero because selection against increased mean
time to reproduction goes to zero in equilibrium popu-
lations (Karban 1997; Van Dooren and Metz 1998). In this
light, adding mortality during dormancy should have two
effects. First, because mortality imposes a demographic
cost on all dormant strategists, high mortality should select
for the shortest dormancy duration that stabilizes system
dynamics. We find exactly this. The average duration of
dormancies present in the population is much more con-
strained when than when , 0.005, orm p 0.50 m p 0.05
0 (fig. 3). Second, the demographic cost that mortality
imposes on dormancy should produce variation in strategy
fitness at system equilibrium. Thus, if absence of mortality
is the sole factor allowing a wide range of dormancy strat-
egists to coexist, any mortality should select for a single
optimum genotype. This does not happen. However, our
results suggest that increasing mortality does force these
systems to approach such a single optimum. We find that
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Figure 3: Frequency distribution at the end of simulations of dormancy genotypes as affected by replacement rate and mortality during dormancy.
Distributions show the effect of varying mortality (columns) and replacement rate (rows) on the distribution of dormancy genotypes after 3,000
generations. Each run was replicated 10 times, and distributions represent the mean of all trials. Light hatched bars represent proportion of the
population that is composed of nondormant genotypes. Dark stippled bars represent dormancy genotypes. Error bars denote 1 standard error.

moderate to low mortalities result in a range of dormancy
strategies being maintained in the population, whereas
very strong mortality ( ) produces the lowest var-m p 0.5
iation among dormancy strategists (fig. 3). Finally, an ESS
analysis of a simpler model may shed some light on
whether coexistence of multiple dormancy strategies is ac-
tually a mixed ESS or represents an intermediate stage
along a very slow march to a monomorphic ESS.

Both Doebeli’s (1995) and Holt and McPeek’s (1996)
models readily generated intermittent chaos that was
driven by negative frequency-dependent selection. Our
model never generates intermittent chaos but does gen-
erate periodicity at higher replacement rates when very
long average dormancies are selected or at lower replace-
ment rates with mortality during dormancy added to the
mix. The periodicity obtained at high replacement rates
in our model probably occurs because no dormancy ge-
notype within the range allowed can fully stabilize these
systems, even when there is no mortality during dormancy
(fig. 2). Mortality during dormancy further destabilizes
our system. This occurs because mortality increases the
demographic cost of dormancy when the system is stable

and thus reduces the fitness of dormant strategists. This
reduces their frequency and causes system fluctuation,
which in turn increases dormant strategist fitness (and thus
strategist frequency). This temporal fluctuation of strate-
gist frequency drives system oscillations that take the form
of periodic orbits at low to moderate mortalities and strong
two- and four-phase cycles at high mortalities.

We return to the paradox. Dormancy should not exist
in stable populations, and we find that this holds true here.
At low replacement rates, dormancy never invades when
rare and tends to disappear if added in large frequencies
as a perturbation. Chaotic dynamics selects for dormancy
because the bet-hedging strategy gives higher geometric
mean fitness to dormant individuals than to nondormant
strategists. The resultant high frequency of dormancy then
eliminates the chaotic dynamics, and the system persists
in a much more stable condition.
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